2011-03-21 /EZEfRE
1. B\ T B VA (28 -

The Least Common Multiple (LCM) is the product of two numbers divided by their Greatest
Common Divisor (GCD), which can be evaluated recursively.
C++:

#include <iostream>

using namespace std;

gcd ( a, b)
{
if (a % b) return gcd(b, a % b);
return b;
}
main()
{
cout << "input a b: ";
a,
b;
cin >> a >> b;
cout << "the LCM of " << a << " and " << b
<< " is " << a * b / gcd(a, b) << '\n';
return 0;
}
Python:

#!/usr/bin/env python
def gcd(x, y):
if x % y: return gcd(y, X % vy)
return y
print "input a b:",
[a, b] = (int, ().split(' "))
print "the LCM of %d and %d is %d" % (a, b, a * b / gcd(a, b))

2. F N\ n {22 W8I H A 20EREA e

Using a recursive thinking, the task of producing all combinations of n items can be broken
up into withholding one item while producing all combinations of the rest n-1 items plus
producing the same combinations of the n-1 items while adding the withheld item to the
mix of each of the produced combination.
C++:

#include <iostream>

using namespace std;

string composed output;

show combinations(string it[], n)
// show combinations of 'n' items in the array 'it'
{
if (!'n) { // no more items to hold, dump the output
cout << "["
<< (composed output.size() ? composed output : " ")
<< "]\n";
return;

}

show combinations(it + 1, n - 1); // withhold 1lst, do the rest
string save str = composed output; // save composed output



// now add the withheld to all mixes

if (composed output.size()) composed output += ", ";

composed output += * it; // show the 1st item

show_combinations(it + 1, n - 1); // do the rest 2 ~ n items again
composed output = save str; // restore composed output

main()

cout << "How many items? ";
nitem;

cin >> nitem;

string names[nitem];

for ( i=0; 1< nitem; i ++) {
cout << "item " << i+ 1 << ": "
cin >> names[i];

}

show combinations(names, nitem); // call the recursive function

return 0;

}

On the other hand, we know combinations is related to binomial expansion. Consider the
product expansion (1+x)*(1+y)*(1+z) = 1+x+y+z+x*y+x*z+y*z+x*y*z. Each term in the
expansion corresponds to a combination of x, y, and z because to form a term on the right
hand side, we need to decide between 1 and the variable for each factor on the left hand
side. If we replace 1 by the empty set {}; the variables by sets of single items, e.g., {apple};
and the ™" operator by the union operator between sets, we get the terms to represent all
the combinations of the items in the product. This actually can be done very concisely in
Python.
Python:

#!/usr/bin/env python

print 'Number of items:',

n = ( ()
L=1]

for i in (0,n):
print 'Item %d:' % (i + 1),
1.append( ())
union product = lambda x,y: [a + b for a in x for b in y]
for i in (union product,[[[],[x]] for x in 1]):
print i

A very popular way to find all combinations from the set of n items is to map the inclusion
of each item to a digit of a n-digit binary number, where 1 means the item is included and 0
means it is not. One can then run through all numbers from 0 to 2"-1 to produce all
possible combinations.
C++:

#include <iostream>

using namespace std;

main()
{

cout << "How many items? ";
nitem;

cin >> nitem;

string names[nitem];

for ( i=0; 1< nitem; i ++) {
cout << "item " << 1 4+ 1 << ": "
cin >> names[il];

}

for ( n==0; n< (1l <<nitem); n ++) {



cout << '[';
first = true;

for ( b=1<<nitem, 1 =0; b>>=1; i++) if (n & b)
{
if (first) first = false;
else cout << ',';
cout << names[i];
if (first) cout << ' ';
cout << "]J\n";
}
return 0;
}

Sometimes, it is also desirable to order the combinations in the number of items each
combination contains. Without doing post processing sort, it becomes somewhat tricky to
enumerate over the combinations. This can be a good brain exercise even though it is not
directly relevant to the course.

3. M URTE 2. FT FIRVIRARE (FAERVRE & 17 fhitE)

It is actually uncommon to express recursion in a flowchart. However, the goal is simply to
provide a visual representation of the algorithm used and there are more than one way of
doing this. See

http://www.csc.liv.ac.uk/~frans/OldLectures/ COMP101/week9/recursion.html for some
insight on this.

Call Selections
of last N-1 items

Y

Add first item
to composition

Y

Call Selections
of last N-1 items

Y

Remove first item
from composition

Selections
of N items

Input N items

Y

Call Selections
of N items

Print composition

Return



http://www.csc.liv.ac.uk/~frans/OldLectures/COMP101/week9/recursion.html

4. BRI A 5 R RE R i

From a recursive view, moving a stack of n disks from rod A to rod C amounts to moving
the stack of n-1 disks from A to B; moving the n-th disk from A to C; then moving the n-1
stack from B to C.

C++:
#include <iostream>
using namespace std;
rods[] = {'A", 'B", 'C'};
move ( fr, to, n)
{
it (n) {
move(fr, 3 - fr - to, n - 1);
cout << rods[fr] << "->" << rods[to] << '\n';
move(3 - fr - to, to, n - 1);
}
}
main()
{
cout << "Moving from A to C\n";
cout << "How many disks? ";
n;
cin >> n;
move(®, 2, n);
return 0;
}
A Python version would look remarkably identical except we could use
mw = ( ("ABC') - (fr + to)).pop()

to figure out the midway rod.
[FERRE ] DAARBEIE 5 A ] A SE R

To do it non-recursively, we can observe that there are limited choices at each move
during the process. The smallest disk is always on top of one of the three rods. If we are
not moving the smallest disk, there is only one way to move. Also, there is no point of
making consecutive moves of the smallest disk. So, we will have to move the smallest disk
for every other move. Observing the solution, we see the smallest disk is moving in a fixed
cyclic direction, i.e., A— B — C - A — B — C. Combining all these consideration, we can
narrow down to the right move for each step. The implementation includes an ASCII art
output as illustrated below.

I

I

I

# ###
i WU B

HHHH
-

I I

I I I

I I

HHH # I
HHHH HEHHHAH  HHHAFRBHY

I I I
I I I
# I I
HHH I I

HHHHH HEHHHHH B




C++:

#include <iostream>
#include <vector>
using namespace std;
size t n;
vector<int> rods[3];
void output stacks()

{
cout << '\n';
for (size t i =n; 1i; 1 --) {
for (size t r=0; r<3; r ++) {
if (rods[r].size() <= 1) {
cout << string(n, ' ') << 'I';
cout << string(n, ' ');
}
else {
size t d = rods[r][i];
cout << string(n - d, ' ');
cout << string(d * 2 + 1, "#');
cout << string(n - d, ' ');
}
}
cout << '\n';
}
cout << string(3 * (2 * n+ 1), '=') << '\n';
}
void move(size t f, size t t)
{
rods[t].push back(rods[f].back());
rods[f].pop back();
}
int main()
{

cout << "How many disks? ";
cin >> n;

for (size t i
for (size t i

=0; 1< 3; 1 ++) rods[i].push back(n);
output stacks()

n; i --;) rods[0].push back(i);

bool m_small
size t small
for (size t i = << n; -- 1i;
size t sl (small + 1)
size t s2 (small + 2)

if (m_small) {
size t s = (sl +n%2)%3;

move(small, s);

true;
0 .

LI B

small = s;
}
else {
if (rods[sl].back() > rods[s2].back()) move(s2,
else move(sl, s2);
}
output stacks();
m small = ! m small;
}
return 0;

sl);



5. ARMERE. HERMAFAREa ke, WHxi# (BE det@ M%)

al1l x1+a12 x2+a13 x3 = c1
a21 x1+a22 x2+a23 x3 =c2
a31 x1+a32 x2+a33 x3 =c3

To solve this system of equations, we can invert the matrix a and have the vector c
multiplied by it to get the vector x. We just use the brute force coding for the 3 by 3 matrix.

C++:

#include <iostream>
#include <fstream>

using

namespace std;

int main()

{

II)\nII;
}

ifstream f i("input.txt");

double a[3][3];
double c[3];
for (size t i
for (size t j
for (size t i
double det = al0
+ al0]1[1]
+ al[0][2]
- al0][0]
- al0][1]
- alo][2]
double b[3]1[31;
b[0][0] = a[1][1]
b[O][1] all][2]
b[0][2] = a[1][0]
b[1]1[0] al2][1]
b[1][1] = a[2][2]
b[1][2] = a[2][0]
b[2][0] = a[O][1]
b[2][1] = a[0][2]
b[2][2] = a[0][0O]
double 31;
x[0] [e][e] *
x[1] [1][0] *
x[2] [2]1[0] *

* X X X ¥—= OO

—_—— X
coo— I I 1 1un1mnmnnn

—~e we

[0]
[2]
[0]
[1]

al2][2]
a[2][0]
al2][1]
al0][2]
alo][o]
al0][1]
all][2]
a[l][0]
all][1]

<
<
<
*
11[2] *
]
]
]
]

* % ¥ %

* X X X K X X X X

3; 1 ++) f_
all][1] * a[2][2]

3; 1 ++)
3; j ++) f_i>>alilljl;
fi>>cl[i];

al2][0]
al2][1]
al2][1]
al2][2]
al2][o];

- all][2]
- al1][oe]
- all][1]
- al2][2]
- al2][0]
- al2][1]
- al0][2]
- alo][o]
- al0][1]

* K K X X X X X ¥

cl0] + b[O][1] * c[1]
c[0] + b[1][1] * c[1]
c[O] + b[2][1] * c[1]

cout << "(x1,x2,x3)=(" << x[0] << ',

return 0;

<< X[1] << '

al2][1];
al2][2];
al2][0];
alo][1];
alo][2];
al0][o];
all][1];
all][2];
al1l][o];

+ b[0][2]
+ b[1][2]
+ b[2][2]

*
*
*

’

cl2]) / det;
cl2]) / det;
cl2]) / det;

<< X[2] <<

o



