2011-04-11 VEZEfRE

1. H leapfrog {£5 T8 _LE BT BEBIHE: 5154 E 0 BkA 8,8 5
(PTH y E[EI2] 0 25— EEAR R 58 LB A « FF (0.01, 0.001,
0.0001) FF leapfrog %F1_F3E F i Euler 2 @GHE ERY 2 5 -

Leapfrog method is really close to the Euler method in implementation. We just need to
take care of alternating the updates of velocities and positions. Also, when the initial
velocities are specified at the same time as the positions, we need to extrapolate for their
values at half a time step before the initial time.
C++:

#include <iostream>

#include <cmath>
using namespace std;

main()
{
dt, x, y, vx, vy, T;
cout << "# Input: time step x0 yO vx0 vyO@ T\n";
cin >> dt >> x >> y >> vx >> vy >> T;
cout << "# Got: " << dt << ' ' << x << ' ' <<y << " !
<< VX << ' " << vy << ' " << T << '"\n';
t =0;
// find velocity at t = - dt / 2
vx -= 0.5 * dt * x / pow(x * x +y *vy, 1.5);
vy -= 0.5 * dt *y / pow(x * x +y *vy, 1.5);
while (t < T) {
rt3 = pow(x * x +y *vy, 1.5);
ax = - x / rt3;
ay = -y / rt3;
vx += dt * ax; // @ t + dt/2
vy += dt * ay;
X +=dt * vx; // @ t + dt
y += dt * vy;
t += dt;
cout << t << "\t' << x << "\t' <<y << '"\n';
}
return 0;
}

Since we started with yO = 0 and vy0 > 0, to find out the period of the orbit we can find the
time when the y position of the planet crossing the y=0 line from the negative side. (For
better accuracy, we interpolate the crossing time using the y values before and after the
crossing.) The specialized code is as follows.
C++:

#include <iostream>

#include <cmath>

euler step(dt, & X, &y,
& vy, & vx)
{
rr = powl(x * x +y *vy, 1.5);
ax = - x / rr;
ay = -y /rr;
X += dt * vx;
y += dt * vy;
vx += dt * ax;
vy += dt * ay;
}

leapfrog step(dt, & X, &y,

& vy, & vx)

{
rr = powl(x * x +y *vy, 1.5);
ax = - x / rr;
ay = -y /rr;
vx += dt * ax;
vy += dt * ay;
X += dt * vx;
y += dt * vy;
}
find period(dt, X, Y,
VX, vy, T,
(* step) (, &, &,
&, &))
{
t =20, py =0;
while (t < T) {
(* step) (dt, x, y, vx, vy);
t += dt;
if (py <0 && y >=0) return t - dt *y / (y - py);
py =Yy,
}
return 0;
}
main()
{
using namespace std;
tau = 0.02;
cout.precision(15);
while (tau > 1le-7) {
cout << tau;
if T = find period(tau, 2, 0, 0.2 + 0.125 * tau,
0.2, 16, & leapfrog step)) cout << '"\t' << T;
if (T = find period(tau, 2, 0, 0.2, 0.2, 16,
& leapfrog step)) cout << '\t' << T;
if (T = find period(tau, 2, 0, 0.2, 0.2, 16,
& euler step)) cout << '"\t' << T;
cout << endl;
tau /= 2;
}
return 0;
}

We compare the results to an estimated exact value of the period T(0) and plot the
absolute values of the differences on a double-log plot as follows. Adjusting the estimated
T(0), we get nice straight lines for a best value of T(0)=7.1202972975. We get slope of 1
for the Euler method, which means the error decrease linearly in tau. On the other hand,
the leapfrog method has a slope of 2, thus, its error decrease much faster, in second order
of tau. Please note that the correction to the initial velocity of the leapfrog method (the
“+0.125*tau” in the code) is important since it amounts to an error that decrease only
linearly in tau. To demontrat this, we also plot the results using leapfrog method without the
corrections in the same plot. As can be seen, while initially the error decrease quadratically
for large tau, it eventual flips sign and decreases only linearly in tau.

0.01

0.0001

abs(T(tau) - T(0))

1e-06

leapfrog —+—

1e-08 |- T(0)=7.1202972975 Euler —s— —
w/o corr. —¥—
r ~tau”2
~tau
19_10 i Il al 1 1 1 Il 1 al 1 1 1 Il 1 il 1
1e-07 1e-06 1e-05 0.0001 0.001 0.01
tau

2. BUEE . LUBTETE & Simpson 7£3K T 31 BN 0~10 [EIRYFE 75
£ (x)=sin[x’exp(—x)+In(x+8)]
FFEMW T VETE Ax=1,0.1,0.01, 0.001 FRFRUFE 5B, 36 ALLVERfh 5 5 1B 7E Ax

When partition the interval into N equal segments, the trapezoidal method amounts to
summing up all functional values at the N-1 partition points plus adding in the average of
the functional values at two ends. The following code repeat such an integral with finer and

finer partitions.

C++:
#include <iostream>
#include <cmath>
using namespace std;

func(X)
{
return sin(x * x * exp(- x) + log(x + 8));
}
main()
{
cout.precision(16);
for (n=10; n < 20000; n *= 2) {
xmin = 0;
xmax = 10;
= (xmax - xmin) / n;
acc = func(xmin) / 2;
for (i=1; 1i<n; i++) {

X =1 * dx;
acc += func(x);

}
acc += func(xmax) / 2;
acc *= dx;

cout << dx << '\t' << acc << endl;

}

Converting the same code to Simpson's rule requires an extra evaluation of the function at
the midpoint of each segment.
C++:

#include <iostream>

#include <cmath>

using namespace std;

func(X)
{
return sin(x * x * exp(- x) + log(x + 8));
}
main()
{
cout.precision(16);
for (n=10; n < 20000; n *= 2) {
xmin = 0;
xmax = 10;
dx = (xmax - xmin) / n;
pf = func(xmin);
acc = 0;
for (i=1; 1<=n; 1 ++) {
X =1 * dx;
f = func(x);
acc += pf + 4 * func(x - dx / 2) + f;
pf = f;
}
acc *= dx / 6;
cout << dx << '\t' << acc << endl;
}
}

For the extra functional evaluation at each segment, the Simpson's rule would be twice as
slow as the trapezoidal method for the same number of segments. However, it can make
up with a much faster convergence that can achieve the same accuracy with a much
coarser partition.

Following error analysis is similar to what we done to the orbital period: We first estimate
the exact value of the integral from the sequence of the approximate values at different dx.
Assuming the errors of these approximations from the estimated exact value decrease
with a certain power in dx, the plot of these deviations on double-log scales should give us
a straight line. We can judge how good this estimate by how straight the line is on the
double-log plot and adjust its value accordingly. The best estimate | got is 1(0) =
3.854264376945003. As can be seen in the following plot, the error of trapezoidal method
decreases with dx*2 while the error of Simpson's rule decreases with dx"4.

0.01 [———rrrr ———rrr
- Tl
I s ¢
0.0001 |- 1(0) = 3.854264376945003 ___,|_-—" >,<' .
1e-06 |- e X .
_ q ¥ X
S 1e-08 | 4 A= X i
g - X
2 1e-10 | -
8 X
1e-12 |- X -
| " Trapezoid -
le-14 - x Simpson X
L ~dX"4 --c--o- |
K ~dX"2 ----no-
1e_-16 | 1 1 1 Lol 1 1 Lol 1 1 1 [T |
0.001 0.01 0.1 1
dx

3. A Monte Carlo 23K _FilthufE 5y, (G 7ERE n — o IR E - (745
TEHE BT AT H A A Y seed)H’EEXM, PSS E R

Graphing the function, we can see it's value fall well within the interval [0,1] between x=0
and x=10. Thus, we can draw random points within this rectangular area to check if they
hit below the curve. In order to estimate the accuracy of the Monte Carlo integral I(n) using
n random points, we repeat the evaluation with different random seeds. The ensemble
generated allows us to estimate the standard deviations of such a method.

C++:

#include "ran nr.hh"
#include <iostream>
#include <cmath>

using namespace std;

(X)
{
return sin(x * x * exp(- x) + log(x + 8));
}
main ()
{
cout.precision(15);
for (n=10; n < 200000; n *= 2) {
I tot = 0;
I2 tot = 0;
for (seed = 0; seed < 1000; seed ++) {
RanNR rng(seed);
cnt = 0;
for (1i=0; i<n; i++) {
y = rng.uniform();
x = 10 * rng.uniform();
if (y f(x)) cnt ++;

I =cnt * 10.0 / n;

}

return 0;

}

The best result we got from an estimate using 163840 points is 3.854+0.012. The standard
deviation Al(n) estimated using 1000 random seeds for each number n of used points is
plotted below and shows a scaling of Al(n) ~ 1/n*0.5, which is much slower comparing to
all the deterministic methods we have seen so far. However, unlike the other methods, the
speed of convergence for Monte Carlo integral is independent of the dimensionality of the
integral. So, in higher dimensions, it often becomes the only effective method of numerical

integral.

sqrt(<In2> - <I>A2)

0.01

I tot += I,;
I2 tot += 1 * I;

I ave = I tot / 1000;

I2 ave = I2 tot / 1000;
std = sqrt(I2 ave -
cout << n << "\t' << I ave << '\t' << std << endl;

I ave * I ave);

0.1 |

MC STD
~x"0.5

0.01

