2011-04-18 /EZEfRE

0
1. # Runge-Kutta — R BRSO BT 2 T2 ¢ ¢ | e
(Butcher #£4145) - a b
K o B p (RELAE o

For the differential equation dy/dt = f(t, y), we consider the Taylor expansions:
y =y, tt,2+0(F) and fit,) = fo5H ot ot yFO(BR)+HO02).
Substitute the expansions in to the differential equation, we get
Y1 =Joo @nd y, = (f1g o1/ 2-

Instead of the mid-point, we evaluate the intermediate step for f; at ¢ = ct, which expands
to

fi=ARet, foet) = fogtelfioorfoo) THO(T).
The estimate of y is, therefore,
¥(0) = (afyth f)t = (ath) foot + b c(figHorfoo)THOT).
Matching the coefficient of the Taylor expansion for y, we get
a=1-1/(2¢) and b = 1/(2¢).

2. H— R BUERT H BB RRIRE, BRI]
Random Seed = 1 | 1000 /gl B B R AEp, ¢, L XKW xy, K
fit - TR ,
A B[5 i
Different random seeds to the (pseudo-)random number TR Th
generator result in different random sequences, which SR R T
can be used to model different realizations of

experiments and allow us to do an ensemble average. We start the walker at the assigned
initial position and the perform the walks until it either arrives home or falls off the cliff.
Note that there is no upper bound on the time this algorithm will run. However, the chance
that it will keep running decays exponentially in time. This kind of algorithm can be
categorized as Las Vegas algorithm in that the resource required is not bounded but it is
also a Monte Carlo algorithm in that the resulted answer is only statistically correct.
C++:
#include <iostream>
#include "ran_nr.hh"
using namespace std;

main()
{

x0;
L;
p;
q;
n sample = 1000;
cout << "x0 L p g: ";
cin >> x0 >> L >> p >> Q;

cout << "got " << x0 << ' ' << L << ' ' << p<< ' " << << "\n';

c_home
c_fall
t _home
t fall
for (i
RanNR rng(
nstep = 0;
X = X0;
while (x > 0 & x < L) {

if (rng.uniform() <p / (p + q)) X --;

else x ++;

nstep ++;

0
0
0
0
0
i

;
;
; 1 < n_sample; i ++) {
);

if (x == 0) {
Cc_home ++;
t home += nstep;

}

else {
c_fall ++;
t fall += nstep;

}
}
cout << "s
cout << "t home="
cout << "t fall="
return 0;

"s rate=" << (c_home) / n_sample << '\n';
<< t_home / c_home << '\n';
<< t_fall / c_fall << '\n';

}

3. A 2.MIREZETE L =100, p= ¢ = 0.5 Ff x,= 1 ~ 99 FU IR REFf ©, (1EE) |
BE 1, =a+bxy+cxy, a=0,LAE/NTZEIER b K c FIHEE -

With the executable hw7_rw from problem 2, we can use a BASH script to obtain the
answer as demonstrggtgd in the lecture. The results are plotted below:
I

T T T T

3000 -

2500

]
§
S 2000 |-
3
o
°
5 1500 |-
E

1000 -

500 - 4 simulation data + |

68.898 x,- 0.37238 x,°
0 | | | | | | | | I
0 10 20 30 40 50 60 70 80 90 100

initial position x;
We note that since we are using the same random seeds (1~1000) for all x,, the data
points are not independent with each other. The adjacent points tend to be close to each
other. To generate independent data points we need to use different sets of random seeds
for different data points. Or, we can use different parts of a single random sequence. The
code for generating the entire data set using one random seed is as follows. The random
number generator is initialized once and the sequence is used continuously to generate all

data in the set.

C++:

#include <iostream>

#include "ran _nr.hh"

using namespace std;
main()

{

RanNR rng(123);
L = 100;
p=0.5;
n _sample = 1000;
for (X0 = 1; x0 L; x0 ++) {
c home = 0, ¢ fall = 0;
t home 0, t fall 0;
for (i 0; i < n sample; i ++) {
nstep = 0;
X = X0;
while (x > 0 & x < L) {
if (rng.uniform() < p) x --;
else x ++;
nstep ++;

A
Il

X a1

}
if (x == 0) {
c _home ++;
t home += nstep;
}
else {
c_fall ++;
t fall += nstep;

}

cout << x0;

cout << "\t' << (c_home) / n sample;
cout << '"\t' << t home / c_home;

cout << "\t' << t fall / c fall;

cout << '\n';

}

return 0;

}

In general application, it is usually preferable to have independent data points in the data
set. Since, the effectiveness of each measurement is reduced when the data are
correlated and the statistical error will no longer go down as fast with the increase of
number of measurements. As seen in the following plot, the uncorrelated data points are
much more scattered:

4000 ! I ! ! I I

3500

3000

2500 -

2000 -

time to get home

1500

1000

LA uncorrelated +
500 4 _|

65.5693 x- 0.314489 x,°

0 " | | | | | | | | I
0 10 20 30 40 50 60 70 8 90 100
initial position xg
The curves in both of the plots are obtained by fitting the data to the analytic form:

chbe+cx&
with the coefficients b and ¢ obtained by minimizing the mean-square error
g(b, c) = Zi[Ti - Th(xi)]z-

The minimizations are carried out alternating in » and ¢ until they both approach their
stationary values. The data are read from “cin” and stored in dynamic “vector” arrays. The
“find_min” function(al) uses the simple minimization algorithm described in lecture. We
alternatingly pass the “find_min” functional the to-be-minimized functions, “fix_c” and
“fix_b”, which are specializations of the “error2” function. For each iteration of the process,
we keep track of the total square change of » and ¢ and stop when this change is
acceptably small.

C++:

#include <iostream>

#include <vector>

#include <cmath>

using namespace std;

vector< > X;
vector< > t;
read data(istream & st)
{
do {
x0, s rate, t home, t fall;
st >> x0 >> s rate >> t home >> t fall;
if (! st.good()) break;
X.push back(x0);
t.push back(t_home);
} while (true);
¥
error2(b, c)
{
err2 = 0;
for (i=x.size(); i --;) {

d = x[i] * (b + ¢ * x[1i]) - t[i];
err2 += d * d;
}

return err2;

}

double fixed val;

double fix c(double b) {return error2(b, fixed val);}
double fix b(double c) {return error2(fixed val, c);}
double find min(double a, double b, double (*func) (double))

{
double fa = (*func)(a), fb = (*func)(b);
double ¢ = (a + b) / 2, fc = (*func)(c);
double 1sz;
do {
1lsz = fabs(a - b);
double d = (b + ¢c) / 2;
double fd = (*func)(d);
if (fd < fc) {
a =c; fa= fc;
c =d; fc = fd;
continue;
}
double e = (c + a) / 2;
double fe = (*func) (e);
if (fe < fc) {
b =c; fb = fc;
c =e; fc = fe;
continue;
}
b =4d; fb = fd;
a =e; fa = fe;
} while (1sz > fabs(a - b));
return c;
}
int main()
{
read data(cin);
double d2 = 1;
double b =1, ¢ = 1;
while (d2 > 1le-12) {
d2 = 0;
fixed val = b;
double new ¢ = find min(c + 10, c¢ - 10, &fix b);
d2 += (¢ - new c) * (c - new C);
C = new C;
fixed val = c;
double new b = find min(b + 10, b - 10, & fix c);
d2 += (b - new b) * (b - new b);
b = new b;
}
cout << "b=" << b << '\n';
cout << "c=" << c << '\n';
return 0;
}

* Note that the average time to get home can be solved analytically with the exact solution:
T, = (2L x, — x4°)/3.

