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Cohesion-induced deepening transition of avalanches
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A directed avalanche model with a control parameter is introduced to describe the transition between
cohesive and noncohesive granular material. The underlying dynamics of the process can be mapped to
interface growth model. In that representation, a continuous phase transition separates the rough phase and the
flat phase. In the avalanche formulation, this corresponds to a transition from deep to shallow avalanches. The
scaling exponents of the avalanches indeed follow those of the underlying interface growth in both phases and
at the transition point. However, the mass hyperscaling relation is broken at the transition point due to the
fractal nature of the avalanche and a hierarchy of critical directed percolation processes.
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[. INTRODUCTION also show that at the transition point, the violation of mass
hyperscaling relation spoils the reduction to two independent
Granular avalanches have received much attention singgxponents established in R¢6]. We will summarize our
sandpile models were used as paradigms of so-called selfesults in Sec. VIII.
organized criticality[1]. However, observations of critical-
type distributions of avalanches in real physical systems are
still rare, with a notable exception: the recent rice pile ex-
periments by Frettet al. [2]. It was suggested by Chris-  One interesting character of cohesion in sand is that it
tensenret al. [3] that the anisotropy in the rice grains allows possesses hysteresis behavior. Consider building a sand
more stable packing configurations in a granular pile, angastle on a beach. It is common sense that we will need to
that this could be responsible for the successful observatiogdd water to the sand before we can shape it into a standing
of criticality. Some of the recent attention has been drawn t@astle. However, without disturbance, the sand castle can
avalanches in cohesive granular materials with the premisgomehow maintain its shape even after it dries[a{it The
that cohesion, which reduces the effect of inertia, will alsomoijsture in sand increases the cohesion between the sand
allow the sand more stable packing configurations and, thuparticles[8] and allows one to manipulate the sand into a
increase the likelihood of observing critical scaling behaviorstable shape that, while not as attainable, is more or less an
(see[4]). While the goal of finding criticality in cohesive equally valid stable shape for dry sand.
Sandpiles remains to be fulfilled even after the experimental In accounting for this Standing-sand-cagt]e effect, we will
work by Quintanillaet al. [4], the effect of cohesion in yse the same stability condition for all cohesiveness of the
granular avalanches represents an interesting direction for gandbox. While, in reality, the space of possible stable con-
theoretical study. figurations for wet and dry sand should not be exactly iden-
In this article, we will use the discrete-height version oftjcal, in this article we shall ignore this distinction to avoid
the sandboxDHSB) model introduced in Ref[5] for an Comp]icating the rules too much.
unloading sandboxFig. 1) to understand the effects of co-  On the other hand, the way an unstable sand surface
hesion in directed avalanche systems. In the foIIowing SeCtopp|eS Sure|y depends on the cohesiveness. In the DHSB

tion, we will discuss how we can model cohesiveness inmodel discussed below, there are only two possible final
avalanche systems. In Sec. lll, we will review the DHSB

model and introduce a cohesion parameter. Previous resulte
in Refs.[5,6] represent a special case of the model, where the
system is in the deep-avalanche phase with the cohesion p&and
rameter p=1/2. In Sec. IV, we describe the step-flow
random-depositioSFRD interface growth model which
underlies the DHSB model and the directed percolatidif)
roughening transition of the SFRD model. In Sec. V, we
focus on the two deterministic limits of the model and
present the exact solution in one of these limits. In Sec. VI,
numerical results for the avalanches in the flat phase of the \

II. TUNABLE PARAMETER FOR COHESION

|- avalanche area

interface model are presented. In Sec. VII, we investigate the B [oweriig wall

scaling behavior at the transition point, where the interface
roughness increases logarithmically in time. We show that
the avalanche-scarred sand surface, while being rougher than FIG. 1. A sandbox system. The rectangular box is filled with
nonscarred ones, retains the same scaling exponent of tland. One of the retaining walls can be lowered slowly to let out the
roughness in the thermodynamic limit. However, we will sand in a sporadic way forming distinct avalanche events.
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where »=0 with probability 1—p and »=1 with probabil-

ity p. (In the earlier studie$§5,6], the value ofp is always
1/2) This is the only place in the dynamics of the DHSB that
the cohesion parametprcomes into play. The lowering wall
which drives the system is implemented in the model by
randomly picking one of the highest siteg;,0) on they

=0 row and by reducing its height by 1,

h(x;,0)—h(x;,0)— 1, 3

wherei is the Monte Carlo time, which also serves as an age
index for the avalanches.
lﬂwering wall A typical configuration of the DHSB before and after an
avalanche is shown in Fig. 3. Since the toppling of a site on
FIG. 2. The lattice structure of the two-dimensional discrete-2 given rowy only affects the stability of the two sites im-
height sandbox model. It corresponds to a top view of the sandboRi€diately above it at thg+ 1 row, we choose to update the
with the lowering wall located at the bottom. system in a row-by-row fashion. For each avalanche, the
entire system is stabilized by such a single sweep of top-

stable states for any toppling site. We will call them thePlings fromy=0 toy=L,.
minimal stable state and the maximal stable state. These two
states are similar to the angle of repose and maximal stable IV. UNDERLYING INTERFACE DYNAMICS

angle in a real sandpile. However, in sandbox model, these The underlying interface dynamics of the sandbox models
states are microscopic while the “angles” of a real sandpile ying y

are macroscopic. We will use a paramegtekvhich is a real is given by the SFRD models with a two-step growth rule

number between 0 and 1, to represent the strength of coh 5,6] as illustrated in Fig. 4. The mapping between the sand-

sion. In the modelp is the probability for a toppling site of ox system and the interface growth model involves identi-

the sandpile to settle into the maximal stable state instead éylng they coordinate of the sandbox model with the time
the minimal one. For wet sangs large, and for dry sang, of the interface growth. Each stable sandbox surface, thus,

is small can_be viewed as a space-tim_e _vvorld-sh_eet configuration of
' the interface growth. Models similar to this generally belong
to the Kardar-Parisi-Zhan@KPZ) universality clas$9] with
. DISCRETE-HEIGHT SANDBOX MODEL the critical exponentsa=1/2, 8=1/3, and z=a/B=3/2

. . . . L which characterize the scaling of interface roughness
With the discussion of the previous section in mind, let us

review the dynamic rules of the discrete-height sandbox WZE(hT_)Z 4)

model. The surface of a sandbésee Fig. 1is represented '

by an integer height \'/ari.abledefined on a two-dimensional Starting from a flat interface at=

square lattice which is tilted at 45° with respect to the low-

ering wall as illustrated in Fig. 2. This is equivalent to con-

sidering only the lattice points whose integeandy coordi- W~t58, (5)

nates satisfy the condition that-y is an even number. The

lowering wall that drives the system by creating unstableAnd, after a characteristic timg~L? the roughness will

sites is located at thg=0 row and the activities in the saturate with a value

system propagate only in the positiyalirection. In our nu-

merical simulations, the system is periodic in sheirection, W~L* (6)

which is parallel to the driving wall. The sizes of the system ) )

in the x andy directions are denoted by the number of sitesdepending on the system sice

L, in each row and the number of rows, respectively. From the mapping introduced in Rd6], the avalanche
As in most sandpile processes, the dynamics of the san@XPonents are given by

box model is defined by a stability condition, a toppling rule,

0, the interface grows
rougher with

and a driving method. They are as follows. The stability TFE:Z, 7
condition of the DHSB is given by z
. 5

h(x,y)smin[h(x—1y—1),h(x+1y—-1)]+s. (1) Tw=o-z-a=3, (8)
with s,=1, which represents the local maximal stable slopegng
The unstable sites in the system topple with the rule

o~ 1-2z .4 9
h(x,y)—minfh(x—1y—1),h(x+1y—-1)]+7% (2 ST T ©
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At the transition pointp=p., we find the roughness of
the SFRD interface diverges only logarithmically in time

W2~ (Int)?, (11

with the exponenty~1 similar to that of the Kerz and
Wolf’'s model as well as the restricted version of the models
by Alon et al.

FIG. 3. A typical configuration of the discrete-height sandbox
model before(left) and after(right) a system spanning avalanche.
Sites participated in the avalanche are shaded darker. The system | the two limits,p=1 andp=0, the toppling process of
sizeL, XLy is 32x64. the avalanches becomes deterministic and the sand surface

topples down layer by layer. The only randomness in the
for the distribution functionsP,(1)~1", P, (w)~w™, and  process comes from the driving meth@8), i.e., that we
Ps(6)~ 679, of avalanche length width w, and depth5. As  randomly lower one of the highest sites at e 0 row to
defined in Ref[5], the avalanche length(width w) repre-  trigger an avalanche. The typical avalanche scar configura-
sents maximuny (x) distance of the toppling sites from the tions at these two limits are shown in Fig. 5. These are the
triggering point while the avalanche depihs the maximum edges of avalanche clusters left on the surface, some of
height change of the toppling sites. Thein these expres- which are partially erased by new avalanches.
sions was eliminated with the mass hyperscaling relation

V. DETERMINISTIC LIMITS

A. Domain walls at p=0

o=2+2+2a (10) The p=0 limit runs into the complication that in the bulk
of the system ¥>0) the sand surface goes down by
obtained from the compactness of the avalanche clusters, i.4wo units at a time. Sincah=h(x,y)—min[h(x—1y—1),
assumingm~lw é. h(x+1y—1)]=1 is stable according to the stability condi-
However, the discrete-height version of the SFRD modetion (1), and the sites on thg=0 row always goes down by
undergoes a DP roughening transitionpat p.~0.294515 one unit each time according to the driving meth@yl the
similar to those studied by Késge and Wolf[10] also Alon  sites on they=1 row will only topple when their heights are
et al.[11]. The KPZ scaling behavior only applies when the two units higher than the triggering sites and they always go
value of the control parameteris greater than the critical down by two units to the same height of the triggering site
value p.. Below this transition point the interface is in a according to the toppling rul€2). All the sites at the higher
trivial flat state, where, for a stationary interfagaterface  rows will be locked into the same even oddness as the sites
time y— o), the density of sites at the bottom=h, layer is  triggering their toppling. Therefore, after all sites have par-
finite. The interface is thusinnedat this level and its growth ticipated in at least one avalanche, their even oddness will be
rate becomes zero. fixed for all subsequent topplings. This means the even odd-
ness of a site is preserved by the toppling process, and that
a. direction of step flow the lines separating the even and odd sites thus form impen-
h etrable domain walls for the avalanchese Fig. 8. This
- hinders the applicability of the same type of analysis as pre-
i sented below for theg=1 limit. However, the numerical
results in Sec. VI will show that the same scaling exponents
as those op=1 case control this limit too.

_ L. i B. Exact solution atp=1

b. 2 N = Thep=1 limit has a nice solution. Since the sites in the
K " amount of deposition [ bulk topple fromAh=2 to Ah=1, the sand surface indeed
- i goes down by only one layer at a time without the compli-
7r| i cations as in thgg=0 case. An exact solution can be ob-

i " tained by considering the avalanches taking place in such
‘ ‘ one single layer. For a brand-new layer, the two boundaries
T ; of the first avalanche open up linearly until the avalanche

’ spans the system in thedirection and leaves two scar lines
on the surface. The two boundaries of the second avalanche

FIG. 4. Two-step growth of the discrete-height step-flow €xpand until they meet the scar lines created by the first
random-deposition interface growth modéd) Step flow by one avalanche. Then, they turn and follow those scar lines until
unit to the right(left) when its sizeAh is negative(positive. (b)  they meet with each other and terminate the avalanche. Sub-
Each site increases by one unit with a probabitity sequent avalanches follow the same scenario. The maximum

= 1
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FIG. 6. The domains of oddshaded regionand even(light
region sites on a DHSB surface at=0. Separating them are do-
main walls that no avalanche will penetrate at this deterministic

limit.
4//&&’\ o /AN A .\\/\[(l/k v VI. SHALLOW-AVALANCHE PHASE

FIG. 5. Scaredge lines of avalanche clusteconfigurations of - .Below the transition point, the underlying interface_mo.d(.-zl
DHSB .avlalanches at the two deterministic limita} p=0; (b) p SN "?‘ﬂat phasg where .the b°“°”.‘ l.a.yer perpolate; with finite
-1 ' density. All the information of the initial configuration of the
' interface(the y=0 row next to the wa)l is wiped out at a

ime scale proportional to the sizes of the islands higher than

e bottom layer in the initial statéWithout deposition, the
sizes of these islands decrease linearly in tinvghile the

nderlying interface model is in a trivial phase, much like the
ncorrelated stationary state in Dhar and Ramaswamy'’s di-
rected sandpile modgl2], the avalanche distributions of the
system may still exhibit power-law scaling. The numerical
values of the scaling exponents shown in Fig. 7 confirm the
we # power-law scaling of the distributions and they are similar to
: (12)  those values found at the=1 fixed point followingz=1

and a=0. While an exact solution is not available in this

if u is the average distance between the triggering points g¢hase, we can understand the scaling exparerit from the

the previous avalanches in the same layer in the stationaferspective that the DP clusters triggered from single seeds
state. The avalanche under consideration could be any one f the percolating phase open up linedrtyw; and also that

the avalanches happening in the same layer. Thus, we need@/ghness exponent=0 comes from the fact that the inter-
average over the number of avalancheaking place before face is flat. However, a difference is that whije<p, repre-

this one in the same layer. For a system of transverse siZ&ENts an entire phase of shallow avalanches which should be
LX1 n= LX/MI the integra| can be carried out exp||c|t|y and controlled by an attractive fixed pOint, tlpFF 1 fixed point is
gives unstable in the sense that the scaling behavior falls back to
the KPZ universality class for any small deficiency in the
cohesivenesp from the value 1.

distance an avalanche cluster can expand from its triggerin
point to each side in thg direction is exactly half the dis-
tance from the nearest triggering point of the previous ava
lanches in the same layer on that side. As the triggerin
points are chosen in an uncorrelated manner, the maximu
width w of an avalanche should follow the Poisson distribu-
tion

Pu(w)= w!

= w2, (13

fw,uwe“d 1 (w=2)!
o Ww! ; w!

VIl. DP ROUGHENING TRANSITION
which results in N ) ) )
At the transition poinjp=p., the interface roughness di-

T=Ty=2. (14  verges logarithmically thus th8 and a exponents, defined
by Egs.(5) and(6), are both zero. Nonetheless, the dynamic
The same results can also be derived from Egsand(8) exponentz has a nontrivial valuezpp~1.582 originating
by assuminggz=1 anda=0. Since the avalanches are com- from the DP nature of the bottom-layer dynamics. Moreover,
pact, the hyperscaling relatidd0) and other exponent rela- at the transition point, the avalanche clusters lose their com-
tions (7)—(9) from Ref.[5] hold. pact shapesgsee Fig. 8 and we should not expect the expo-
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35l ] - - FIG. 8. Typical large avalanche cluster for DHE® at the DP
’ 160 | transition point;(b) in the deep avalanche phage<0.5), triggered
i | 1 | at lowering wall boundary at the bottom. The lengthnd widthw
30 I 0.1 I 0.2 0 I 0.1 ' 0.2 of each avalanche are as labeled. Black area in the clustey isf
1w 1/w of sites that topple to the lowest heighg of the bottom layer. It

shows the percolation of the bottom layer. One sees that the ava-

FIG. 7. Finite-size scalingFS9 estimates of the scaling expo- |anche cluster maintains a compact structure in the deep-avalanche
nents versus the inverse width @)/ of avalanche clusters for the phase while it becomes more fractal-like at the transition point.
DHSB avalanches in the shallow-avalanche phaseasured ap
=0.1). They are consistent wih=0 andz=1. which lead, in Ref[5], to the mass hyperscaling relation

(10). The plot of the combined exponeat-z— 2« in Fig.

nent relationg7)—(10), nor the calculation in Ref6] for the 10 shows the violation of Eq10) as the FSS estimates ap-
corrections to the KPZ scaling to remain valid. In this sec-proach~1.72, which is much lower than the expected value
tion, we will demonstrate the break down of mass hyperscal2 for compact avalanches obeying Ef5).
ing relation(10) and how the avalanches affect the roughness Also shown in Fig. 10 are the plots for the, z, and o
of the sand surface. exponents. They are consistent with zp and more or less
with @=0. This confirms that the scaling behavior of the
avalanches follows those of the SFRD interface. The slow
convergence ofx is to be expected from the logarithmic

At the transition point, the bottom layer of an avalanchedivergence of the interface roughness.
cluster follows the critical DP dynamics. Therefore, we
should expect from the fractal DP cluster shape that the den-
sity of sites at the lowesh=h, level goes to zero in the
thermodynamic limit for large avalanches. However, the The remaining question is how the scaling behavior of the
overall shape of an avalanche consists, in addition, of sites &pughness is changed by the iterated avalanche process. We
ho+1ho+2, ... levels. The higher-level sites that partici- @approach this by looking at the change of the global surface
pate in the avalanche fill into the holes and voids next to théoughness itself and by comparing the scaling of this change
bottom layer cluster and more or less bring the avalanché the scaling of the original interface roughness. The same
cluster back to a compact shape. We can verify this compac@nalysis was performed in Ré6] which concerns only the
ness of the avalanche cluster by a direct measurement of tig= 1/2 case of the DHSB, and it was found that the change
ratioa/(lw), with a being the area dfor, the number of sites in the global roughness by the avalanche process only repre-
participating in an avalanche. The result is shown as thesents large corrections to the KPZ scaling behavior of the
solid line in Fig. 9. The approach to a finite value on thesurface. However, at the DP transition point, the interface
vertical axis demonstrates the compactness of the avalancheughness diverges only logarithmically. This makes the
clusters by the existence of a finite area densiy.2 in the ~ scaling of interface roughness more likely to be over-
thermodynamic limit. The FSS estimates are plotted againgvhelmed by the change in the roughness due to the ava-
1/Iny instead of 1y since the roughness of the surface di-lanche process, and we generally would not expect the val-
verges only logarithmically iny, which will be elaborated ues of the scaling exponents to remain the same. In the

A. Breakdown of mass hyperscaling

B. Interface roughness

later. following, we will show the scaling of the interface does
Contrary to a finite area density, as also shown in Fig. 9follow the same logarithmic divergence. _
the mass densityn/(Iw 8) (the dashed linegoes to zero in ~ We perform a direct measurement of the global interface
the thermodynamic limit. The absence of a finite mass dentoughness at the transition point. The results are shown in
sity breaks the scaling Fig. 11(a). As in thep=1/2 case, the surface is made rougher
by the iterated avalanches. The increase in the roughness
m~lwd, (15  AW? scale as (Im)" with the exponenty,~0.4 which is
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0.8

0.6

02—

1/In/ ' 1.2~ .

FIG. 9. The FSS plot of the area densiti(lw) (solid line) and
the mass densityn/(Iw ) (dashed ling versus the inverse length 0.8
logarithm (1/Inl) for the avalanche clusters at the DP transition
point. While the area density converges to a finite value at the B
thermodynamic limit, the mass density converges to 0.

041
shown as the dashed line in Fig.(ll Since the interface .
roughness itself scales a§%~ (Int)? with y~1 which is 0 0.2 0.4 0.6 0.8
shown as the solid line in Fig. 11d), the change in the rough- 1/In¢

ness is irrelevant comparing to the |nte.rfa.ce. scaling. We can FIG. 11. (&) The roughness of a stationary DHSB surfamted
thus conclude that in the thermodynamic limit, the statlonary”ne) compared with the roughness of the SFRD magelid line
surfaces of DHSB have the sameexponent as the SFRD

: f in th h £ th versus the double logarithm of timiet the DP transition point. The
interfaces. Just as in the deep phape=(/2) of the ava- iterated avalanche process makes the surface rougher. The dashed

lanche, the iterated avalanche process only gives rise t0 Sigaa shows the differenceA W2=W2, ,s5— Warnp between the

able corrections to the interface scaling behavior. roughness of the twab) FSS of they exponents of the logarithmic
scaling for the SFRD roughne¥¥2.x (solid line) and the differ-
Vill. SUMMARY enceAW? (dashed ling both assumed to have the scaling form

. . . (Int)?, versus the inverse of the logarithm of time. In the
In this article, we introduced the DHSB as a model for“mit, AW? scales with a smalley exponent than that o2,

avalanches in granular materials with variable cohesiveness.

06“_ —— 1'62 : : This model exhibits a deepening transition from a shallow-
T ) i ] avalanche phase, where avalanches only involve a couple of
04l | 155k ] surface layers of the granular material, into a deep-avalanche
7l | | phase where the depths of avalanches increase as power laws
on 4 15k in their Iengthg or widths. In the deep-avalanche phase, the

’ scaling behavior of the avalanches belongs to the KPZ uni-

0 ] 145 I versality class: The avalanche clusters scale anisotropically

0 0.1 020 with |~w®? and their depths increase as-w'2. In the flat
1w

phase, the avalanche clusters scale isotropically iwvitiv,
and their depths are finite.

46 — 652'20‘ : : In both phases, the mass hyperscaling relatid) based
| ] i | on compactnes§lb) of the avalanches holds. On the other
391 4 sk a hand, at the tran;ition point, the hierarchical DP structure,
| | | i pointed out by Taber et al. [13], for each height level
\ breaks this scaling in a subtle way. While the mass density
3.8 - 16 - .
| i | 1 m/(Iw ) of the avalanche clusters goes to zero in the ther-
37 L L4 L modynamic limit, the area densitg/(lw) remains finite.
] 0.1 02 770 0.1 0.2 However, the exact scaling behavior of the systems at this
1w 1w DP roughening transition point remains unclear even without

FIG. 10. FSS estimates of the scaling exponents derived fronin€ iterated avalanche in the DHSB mogie4-14.
the avalanche exponents, 7,,, 75 for the discrete-height sandbox ~ While we are not aware of any experimental study on how
model versus the inverse width ¢dy at the DP transition point. the avalanche behavior of a system will vary with a gradual
The z exponent is consistent with the dynamic exponent of DPchange in the cohesiveness of the grains, the cohesiveness in

universality clasgpp=1.582. The combinationr—z—2a<2 indi-  granular system is known to vary with moistdig§ and grain
cates a violation of mass hyperscaling relati@0). sizes[17,4]. We thus expect experimental studies in this di-

061304-6



COHESION-INDUCED DEEPENING TRANSITION ©. .. PHYSICALREVIEW E 66, 061304 (2002

rection to be feasible. The DHSB model represents a systeiih would serve as a hallmark of such a transition if it is to be
with a layered structure where the heights are discrete, anobserved experimentally.

the DP nature of the deepening transition relies heavily on a

well-defined bottom layer or minimal staple ponﬂguraﬂon of ACKNOWLEDGMENTS
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