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Cohesion-induced deepening transition of avalanches

Chun-Chung Chen
Department of Physics, University of Washington, Seattle, Washington 98195

~Received 6 September 2002; published 18 December 2002!

A directed avalanche model with a control parameter is introduced to describe the transition between
cohesive and noncohesive granular material. The underlying dynamics of the process can be mapped to
interface growth model. In that representation, a continuous phase transition separates the rough phase and the
flat phase. In the avalanche formulation, this corresponds to a transition from deep to shallow avalanches. The
scaling exponents of the avalanches indeed follow those of the underlying interface growth in both phases and
at the transition point. However, the mass hyperscaling relation is broken at the transition point due to the
fractal nature of the avalanche and a hierarchy of critical directed percolation processes.
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I. INTRODUCTION

Granular avalanches have received much attention s
sandpile models were used as paradigms of so-called
organized criticality@1#. However, observations of critical
type distributions of avalanches in real physical systems
still rare, with a notable exception: the recent rice pile e
periments by Fretteet al. @2#. It was suggested by Chris
tensenet al. @3# that the anisotropy in the rice grains allow
more stable packing configurations in a granular pile, a
that this could be responsible for the successful observa
of criticality. Some of the recent attention has been drawn
avalanches in cohesive granular materials with the prem
that cohesion, which reduces the effect of inertia, will a
allow the sand more stable packing configurations and, t
increase the likelihood of observing critical scaling behav
~see @4#!. While the goal of finding criticality in cohesive
sandpiles remains to be fulfilled even after the experime
work by Quintanilla et al. @4#, the effect of cohesion in
granular avalanches represents an interesting direction
theoretical study.

In this article, we will use the discrete-height version
the sandbox~DHSB! model introduced in Ref.@5# for an
unloading sandbox~Fig. 1! to understand the effects of co
hesion in directed avalanche systems. In the following s
tion, we will discuss how we can model cohesiveness
avalanche systems. In Sec. III, we will review the DHS
model and introduce a cohesion parameter. Previous re
in Refs.@5,6# represent a special case of the model, where
system is in the deep-avalanche phase with the cohesion
rameter p51/2. In Sec. IV, we describe the step-flo
random-deposition~SFRD! interface growth model which
underlies the DHSB model and the directed percolation~DP!
roughening transition of the SFRD model. In Sec. V, w
focus on the two deterministic limits of the model an
present the exact solution in one of these limits. In Sec.
numerical results for the avalanches in the flat phase of
interface model are presented. In Sec. VII, we investigate
scaling behavior at the transition point, where the interfa
roughness increases logarithmically in time. We show t
the avalanche-scarred sand surface, while being rougher
nonscarred ones, retains the same scaling exponent o
roughness in the thermodynamic limit. However, we w
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also show that at the transition point, the violation of ma
hyperscaling relation spoils the reduction to two independ
exponents established in Ref.@6#. We will summarize our
results in Sec. VIII.

II. TUNABLE PARAMETER FOR COHESION

One interesting character of cohesion in sand is tha
possesses hysteresis behavior. Consider building a
castle on a beach. It is common sense that we will nee
add water to the sand before we can shape it into a stan
castle. However, without disturbance, the sand castle
somehow maintain its shape even after it dries out@7#. The
moisture in sand increases the cohesion between the
particles@8# and allows one to manipulate the sand into
stable shape that, while not as attainable, is more or les
equally valid stable shape for dry sand.

In accounting for this standing-sand-castle effect, we w
use the same stability condition for all cohesiveness of
sandbox. While, in reality, the space of possible stable c
figurations for wet and dry sand should not be exactly id
tical, in this article we shall ignore this distinction to avo
complicating the rules too much.

On the other hand, the way an unstable sand surf
topples surely depends on the cohesiveness. In the DH
model discussed below, there are only two possible fi

FIG. 1. A sandbox system. The rectangular box is filled w
sand. One of the retaining walls can be lowered slowly to let out
sand in a sporadic way forming distinct avalanche events.
©2002 The American Physical Society04-1
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stable states for any toppling site. We will call them t
minimal stable state and the maximal stable state. These
states are similar to the angle of repose and maximal st
angle in a real sandpile. However, in sandbox model, th
states are microscopic while the ‘‘angles’’ of a real sandp
are macroscopic. We will use a parameterp, which is a real
number between 0 and 1, to represent the strength of c
sion. In the model,p is the probability for a toppling site o
the sandpile to settle into the maximal stable state instea
the minimal one. For wet sand,p is large, and for dry sand,p
is small.

III. DISCRETE-HEIGHT SANDBOX MODEL

With the discussion of the previous section in mind, let
review the dynamic rules of the discrete-height sandb
model. The surface of a sandbox~see Fig. 1! is represented
by an integer height variableh defined on a two-dimensiona
square lattice which is tilted at 45° with respect to the lo
ering wall as illustrated in Fig. 2. This is equivalent to co
sidering only the lattice points whose integerx andy coordi-
nates satisfy the condition thatx1y is an even number. The
lowering wall that drives the system by creating unsta
sites is located at they50 row and the activities in the
system propagate only in the positivey direction. In our nu-
merical simulations, the system is periodic in thex direction,
which is parallel to the driving wall. The sizes of the syste
in the x andy directions are denoted by the number of si
Lx in each row and the number of rowsLy , respectively.

As in most sandpile processes, the dynamics of the sa
box model is defined by a stability condition, a toppling ru
and a driving method. They are as follows. The stabi
condition of the DHSB is given by

h~x,y!<min@h~x21,y21!,h~x11,y21!#1sc ~1!

with sc51, which represents the local maximal stable slo
The unstable sites in the system topple with the rule

h~x,y!→min@h~x21,y21!,h~x11,y21!#1h, ~2!

FIG. 2. The lattice structure of the two-dimensional discre
height sandbox model. It corresponds to a top view of the sand
with the lowering wall located at the bottom.
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whereh50 with probability 12p andh51 with probabil-
ity p. ~In the earlier studies@5,6#, the value ofp is always
1/2.! This is the only place in the dynamics of the DHSB th
the cohesion parameterp comes into play. The lowering wal
which drives the system is implemented in the model
randomly picking one of the highest sites (xi ,0) on they
50 row and by reducing its height by 1,

h~xi ,0!→h~xi ,0!21, ~3!

wherei is the Monte Carlo time, which also serves as an a
index for the avalanches.

A typical configuration of the DHSB before and after a
avalanche is shown in Fig. 3. Since the toppling of a site
a given rowy only affects the stability of the two sites im
mediately above it at they11 row, we choose to update th
system in a row-by-row fashion. For each avalanche,
entire system is stabilized by such a single sweep of t
plings fromy50 to y5Ly .

IV. UNDERLYING INTERFACE DYNAMICS

The underlying interface dynamics of the sandbox mod
is given by the SFRD models with a two-step growth ru
@5,6# as illustrated in Fig. 4. The mapping between the sa
box system and the interface growth model involves ide
fying the y coordinate of the sandbox model with the timet
of the interface growth. Each stable sandbox surface, th
can be viewed as a space-time world-sheet configuratio
the interface growth. Models similar to this generally belo
to the Kardar-Parisi-Zhang~KPZ! universality class@9# with
the critical exponentsa51/2, b51/3, and z5a/b53/2
which characterize the scaling of interface roughness

W2[~h2h̄! 2̄. ~4!

Starting from a flat interface att50, the interface grows
rougher with

W;tb. ~5!

And, after a characteristic timetc'Lz, the roughness will
saturate with a value

W;La ~6!

depending on the system sizeL.
From the mapping introduced in Ref.@5#, the avalanche

exponents are given by

t l5
s212a

z
52, ~7!

tw5s2z2a5
5

2
, ~8!

and

td5
s212z

a
54, ~9!

-
x
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for the distribution functions,Pl( l ); l t l, Pw(w);wtw, and
Pd(d);dtd, of avalanche lengthl, width w, and depthd. As
defined in Ref.@5#, the avalanche lengthl ~width w) repre-
sents maximumy ~x! distance of the toppling sites from th
triggering point while the avalanche depthd is the maximum
height change of the toppling sites. Thes in these expres-
sions was eliminated with the mass hyperscaling relation

s521z12a ~10!

obtained from the compactness of the avalanche clusters
assumingm; lwd.

However, the discrete-height version of the SFRD mo
undergoes a DP roughening transition atp5pc'0.294515
similar to those studied by Kerte´sz and Wolf@10# also Alon
et al. @11#. The KPZ scaling behavior only applies when t
value of the control parameterp is greater than the critica
value pc . Below this transition point the interface is in
trivial flat state, where, for a stationary interface~interface
time y→`), the density of sites at the bottomh5h0 layer is
finite. The interface is thuspinnedat this level and its growth
rate becomes zero.

FIG. 3. A typical configuration of the discrete-height sandb
model before~left! and after~right! a system spanning avalanch
Sites participated in the avalanche are shaded darker. The sy
sizeLx3Ly is 32364.

FIG. 4. Two-step growth of the discrete-height step-flo
random-deposition interface growth model.~a! Step flow by one
unit to the right~left! when its sizeDh is negative~positive!. ~b!
Each site increases by one unit with a probabilityp.
06130
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At the transition pointp5pc , we find the roughness o
the SFRD interface diverges only logarithmically in time

W2;~ ln t !g, ~11!

with the exponentg'1 similar to that of the Kerte´sz and
Wolf’s model as well as the restricted version of the mod
by Alon et al.

V. DETERMINISTIC LIMITS

In the two limits,p51 andp50, the toppling process o
the avalanches becomes deterministic and the sand su
topples down layer by layer. The only randomness in
process comes from the driving method~3!, i.e., that we
randomly lower one of the highest sites at they50 row to
trigger an avalanche. The typical avalanche scar config
tions at these two limits are shown in Fig. 5. These are
edges of avalanche clusters left on the surface, some
which are partially erased by new avalanches.

A. Domain walls at pÄ0

Thep50 limit runs into the complication that in the bul
of the system (y.0) the sand surface goes down b
two units at a time. SinceDh[h(x,y)2min@h(x21,y21),
h(x11,y21)]51 is stable according to the stability cond
tion ~1!, and the sites on they50 row always goes down by
one unit each time according to the driving method~3!, the
sites on they51 row will only topple when their heights ar
two units higher than the triggering sites and they always
down by two units to the same height of the triggering s
according to the toppling rule~2!. All the sites at the higher
rows will be locked into the same even oddness as the s
triggering their toppling. Therefore, after all sites have p
ticipated in at least one avalanche, their even oddness wi
fixed for all subsequent topplings. This means the even o
ness of a site is preserved by the toppling process, and
the lines separating the even and odd sites thus form imp
etrable domain walls for the avalanches~see Fig. 6!. This
hinders the applicability of the same type of analysis as p
sented below for thep51 limit. However, the numerica
results in Sec. VI will show that the same scaling expone
as those ofp51 case control this limit too.

B. Exact solution at pÄ1

The p51 limit has a nice solution. Since the sites in th
bulk topple fromDh52 to Dh51, the sand surface indee
goes down by only one layer at a time without the comp
cations as in thep50 case. An exact solution can be o
tained by considering the avalanches taking place in s
one single layer. For a brand-new layer, the two bounda
of the first avalanche open up linearly until the avalanc
spans the system in thex direction and leaves two scar line
on the surface. The two boundaries of the second avalan
expand until they meet the scar lines created by the
avalanche. Then, they turn and follow those scar lines u
they meet with each other and terminate the avalanche. S
sequent avalanches follow the same scenario. The maxim

em
4-3
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distance an avalanche cluster can expand from its trigge
point to each side in thex direction is exactly half the dis
tance from the nearest triggering point of the previous a
lanches in the same layer on that side. As the trigger
points are chosen in an uncorrelated manner, the maxim
width w of an avalanche should follow the Poisson distrib
tion

Pw~w!5
mwe2m

w!
, ~12!

if m is the average distance between the triggering point
the previous avalanches in the same layer in the statio
state. The avalanche under consideration could be any on
the avalanches happening in the same layer. Thus, we ne
average over the number of avalanchesn taking place before
this one in the same layer. For a system of transverse
Lx , n5Lx /m, the integral can be carried out explicitly an
gives

E
0

`mwe2m

w!
d

1

m
5

~w22!!

w!
;w22, ~13!

which results in

t l5tw52. ~14!

The same results can also be derived from Eqs.~7! and~8!
by assumingz51 anda50. Since the avalanches are com
pact, the hyperscaling relation~10! and other exponent rela
tions ~7!–~9! from Ref. @5# hold.

FIG. 5. Scar~edge lines of avalanche clusters! configurations of
DHSB avalanches at the two deterministic limits:~a! p50; ~b! p
51.
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VI. SHALLOW-AVALANCHE PHASE

Below the transition point, the underlying interface mod
is in a flat phase where the bottom layer percolates with fin
density. All the information of the initial configuration of th
interface~the y50 row next to the wall! is wiped out at a
time scale proportional to the sizes of the islands higher t
the bottom layer in the initial state.~Without deposition, the
sizes of these islands decrease linearly in time.! While the
underlying interface model is in a trivial phase, much like t
uncorrelated stationary state in Dhar and Ramaswamy’s
rected sandpile model@12#, the avalanche distributions of th
system may still exhibit power-law scaling. The numeric
values of the scaling exponents shown in Fig. 7 confirm
power-law scaling of the distributions and they are similar
those values found at thep51 fixed point followingz51
and a50. While an exact solution is not available in th
phase, we can understand the scaling exponentz51 from the
perspective that the DP clusters triggered from single se
in the percolating phase open up linearlyl;w; and also that
roughness exponenta50 comes from the fact that the inte
face is flat. However, a difference is that whilep,pc repre-
sents an entire phase of shallow avalanches which shoul
controlled by an attractive fixed point, thep51 fixed point is
unstable in the sense that the scaling behavior falls bac
the KPZ universality class for any small deficiency in t
cohesivenessp from the value 1.

VII. DP ROUGHENING TRANSITION

At the transition pointp5pc , the interface roughness d
verges logarithmically thus theb and a exponents, defined
by Eqs.~5! and~6!, are both zero. Nonetheless, the dynam
exponentz has a nontrivial valuezDP'1.582 originating
from the DP nature of the bottom-layer dynamics. Moreov
at the transition point, the avalanche clusters lose their c
pact shapes~see Fig. 8! and we should not expect the exp

FIG. 6. The domains of odd~shaded region! and even~light
region! sites on a DHSB surface atp50. Separating them are do
main walls that no avalanche will penetrate at this determini
limit.
4-4
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nent relations~7!–~10!, nor the calculation in Ref.@6# for the
corrections to the KPZ scaling to remain valid. In this se
tion, we will demonstrate the break down of mass hypers
ing relation~10! and how the avalanches affect the roughn
of the sand surface.

A. Breakdown of mass hyperscaling

At the transition point, the bottom layer of an avalanc
cluster follows the critical DP dynamics. Therefore, w
should expect from the fractal DP cluster shape that the d
sity of sites at the lowesth5h0 level goes to zero in the
thermodynamic limit for large avalanches. However, t
overall shape of an avalanche consists, in addition, of site
h011,h012, . . . levels. The higher-level sites that partic
pate in the avalanche fill into the holes and voids next to
bottom layer cluster and more or less bring the avalan
cluster back to a compact shape. We can verify this comp
ness of the avalanche cluster by a direct measurement o
ratio a/( lw), with a being the area of~or, the number of sites
participating in! an avalanche. The result is shown as t
solid line in Fig. 9. The approach to a finite value on t
vertical axis demonstrates the compactness of the avala
clusters by the existence of a finite area density'0.2 in the
thermodynamic limit. The FSS estimates are plotted aga
1/lny instead of 1/y since the roughness of the surface
verges only logarithmically iny, which will be elaborated
later.

Contrary to a finite area density, as also shown in Fig
the mass densitym/( lwd) ~the dashed line! goes to zero in
the thermodynamic limit. The absence of a finite mass d
sity breaks the scaling

m; lwd, ~15!

FIG. 7. Finite-size scaling~FSS! estimates of the scaling expo
nents versus the inverse width (1/w) of avalanche clusters for th
DHSB avalanches in the shallow-avalanche phase~measured atp
50.1). They are consistent witha50 andz51.
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which lead, in Ref.@5#, to the mass hyperscaling relatio
~10!. The plot of the combined exponents2z22a in Fig.
10 shows the violation of Eq.~10! as the FSS estimates ap
proach'1.72, which is much lower than the expected val
2 for compact avalanches obeying Eq.~15!.

Also shown in Fig. 10 are the plots for thea, z, ands
exponents. They are consistent withz5zDP and more or less
with a50. This confirms that the scaling behavior of th
avalanches follows those of the SFRD interface. The s
convergence ofa is to be expected from the logarithmi
divergence of the interface roughness.

B. Interface roughness

The remaining question is how the scaling behavior of
roughness is changed by the iterated avalanche process
approach this by looking at the change of the global surf
roughness itself and by comparing the scaling of this cha
to the scaling of the original interface roughness. The sa
analysis was performed in Ref.@6# which concerns only the
p51/2 case of the DHSB, and it was found that the chan
in the global roughness by the avalanche process only re
sents large corrections to the KPZ scaling behavior of
surface. However, at the DP transition point, the interfa
roughness diverges only logarithmically. This makes
scaling of interface roughness more likely to be ov
whelmed by the change in the roughness due to the a
lanche process, and we generally would not expect the
ues of the scaling exponents to remain the same. In
following, we will show the scaling of the interface doe
follow the same logarithmic divergence.

We perform a direct measurement of the global interfa
roughness at the transition point. The results are show
Fig. 11~a!. As in thep51/2 case, the surface is made rough
by the iterated avalanches. The increase in the rough
DW2 scale as (lnt)gD with the exponentgD'0.4 which is

FIG. 8. Typical large avalanche cluster for DHSB~a! at the DP
transition point;~b! in the deep avalanche phase (p50.5), triggered
at lowering wall boundary at the bottom. The lengthl and widthw
of each avalanche are as labeled. Black area in the cluster of~a! is
of sites that topple to the lowest heighth0 of the bottom layer. It
shows the percolation of the bottom layer. One sees that the
lanche cluster maintains a compact structure in the deep-avala
phase while it becomes more fractal-like at the transition point.
4-5



-
ca
ar

s

o
es

w-
le of
che
laws
the
ni-
ally

er
re,

sity
er-

this
out

ow
ual
ss in

di-

h
on
th

ro
x

DP

ashed

m

CHUN-CHUNG CHEN PHYSICAL REVIEW E66, 061304 ~2002!
shown as the dashed line in Fig. 11~b!. Since the interface
roughness itself scales asW2;(ln t)g with g'1 which is
shown as the solid line in Fig. 11~b!, the change in the rough
ness is irrelevant comparing to the interface scaling. We
thus conclude that in the thermodynamic limit, the station
surfaces of DHSB have the sameg exponent as the SFRD
interfaces. Just as in the deep phase (p51/2) of the ava-
lanche, the iterated avalanche process only gives rise to
able corrections to the interface scaling behavior.

VIII. SUMMARY

In this article, we introduced the DHSB as a model f
avalanches in granular materials with variable cohesiven

FIG. 9. The FSS plot of the area densitya/( lw) ~solid line! and
the mass densitym/( lwd) ~dashed line! versus the inverse lengt
logarithm (1/lnl) for the avalanche clusters at the DP transiti
point. While the area density converges to a finite value at
thermodynamic limit, the mass density converges to 0.

FIG. 10. FSS estimates of the scaling exponents derived f
the avalanche exponentst l , tw , td for the discrete-height sandbo
model versus the inverse width (1/w) at the DP transition point.
The z exponent is consistent with the dynamic exponent of
universality classzDP.1.582. The combinations2z22a,2 indi-
cates a violation of mass hyperscaling relation~10!.
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This model exhibits a deepening transition from a shallo
avalanche phase, where avalanches only involve a coup
surface layers of the granular material, into a deep-avalan
phase where the depths of avalanches increase as power
in their lengths or widths. In the deep-avalanche phase,
scaling behavior of the avalanches belongs to the KPZ u
versality class: The avalanche clusters scale anisotropic
with l;w3/2 and their depths increase asd;w1/2. In the flat
phase, the avalanche clusters scale isotropically withl;w,
and their depths are finite.

In both phases, the mass hyperscaling relation~10! based
on compactness~15! of the avalanches holds. On the oth
hand, at the transition point, the hierarchical DP structu
pointed out by Ta¨uber et al. @13#, for each height level
breaks this scaling in a subtle way. While the mass den
m/( lwd) of the avalanche clusters goes to zero in the th
modynamic limit, the area densitya/( lw) remains finite.
However, the exact scaling behavior of the systems at
DP roughening transition point remains unclear even with
the iterated avalanche in the DHSB model@14–16#.

While we are not aware of any experimental study on h
the avalanche behavior of a system will vary with a grad
change in the cohesiveness of the grains, the cohesivene
granular system is known to vary with moisture@8# and grain
sizes@17,4#. We thus expect experimental studies in this

e

m

FIG. 11. ~a! The roughness of a stationary DHSB surface~dotted
line! compared with the roughness of the SFRD model~solid line!
versus the double logarithm of timet at the DP transition point. The
iterated avalanche process makes the surface rougher. The d
line shows the differenceDW2[WDHSB

2 2WSFRD
2 between the

roughness of the two.~b! FSS of theg exponents of the logarithmic
scaling for the SFRD roughnessWSFRD

2 ~solid line! and the differ-
enceDW2 ~dashed line!, both assumed to have the scaling for
(ln t)g, versus the inverse of the logarithm of time. In thet→`
limit, DW2 scales with a smallerg exponent than that ofW2.
4-6
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COHESION-INDUCED DEEPENING TRANSITION OF . . . PHYSICALREVIEW E 66, 061304 ~2002!
rection to be feasible. The DHSB model represents a sys
with a layered structure where the heights are discrete,
the DP nature of the deepening transition relies heavily o
well-defined bottom layer or minimal stable configuration
the system. It thus would not be a surprise if exact DP s
ing were not observed in the avalanches of most experim
tal sandpiles. Nonetheless, the breakdown of the mass hy
scaling relation~10! comes from the fractal aspect of th
hierarchical DP clusters and is a more fundamental prope
E

w
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It would serve as a hallmark of such a transition if it is to
observed experimentally.
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