arg, a C++ command-line parser

Chun-Chung Chen
May 7, 2010

Version: 1.0
URL: http://cedw.org/~cjj/prog/arg/
Copyright 2010 Chun-Chung Chen <cjj@Qu.washington.edu>

Contents

1 A simple example

2 Option properties

3 Adding help and a complex example
4 Callback function

5 Subparser

6 Value class

7 Non-option arguments

8 Information

1 A simple example

To use the arg parser, you need to: 1. include the header file “arg.hh” in your
program; 2. create a parser object (“arg::Parser”); 3. add options to the
parser object; 4. pass command-line data to the parser object. An example of

simple programs using the arg parser as follows.

#include <arg.hh> // 1.
#include <iostream>

int main(int argc, char ** argv)

{

arg::Parser p; // 2.

http://ccdw.org/~cjj/prog/arg/
mailto:cjj@u.washington.edu

int n;
p.-add_opt (’n’).stow(n); // 3.

p.parse(argc, argv); // 4.

std::cout << n << ’\n’;
return O;

}

This allows you to pass, on command line, an integer to the variable “n” in the
program. This example is included in arg package as “arg_ex0.cc”. You can
compile it with the command:

$ c++ arg_ex0.cc arg.cc -I. -o arg_exO0

to produce the executable “arg_ex0” without installing the library.

2 Option properties

All the work required to do is adding various options to the parser. This is
accomplished by the “add_opt” function, which returns the reference to the
added option (“arg::0ption &”). We can modify the properties of an option
by calling its member functions. All the property modifying member functions
of an option will return the reference of the same option which allow us to chain
up these function calls. (This chaining of function call is a hack around C++’s
lack of named arguments in function calls.)

Each option can have a value string immediately following a short option
switch (with or without separating space, e.g., “-n10” or “-n 10”) or attached
to a long option switch by “=” character (, e.g., “~—num=10"). Currently sup-
ported modifiers are list in Table 1 and described below.

template<typename T> Option &stow(T &t);

Stow the value to the variable “t” when the option is invoked. The type of
“t” need to be streamable, supporting the “put-to” and “get-from” operators:
“<<” and “>>7.

Option &store(Value *ptr = 0);

Pass a “Value” object (pointed to by “ptr”) to the option. The “Value” object
will be deleted when the option is destructed. The “Value” object is used to
process the value string when the option is invoked.

Option &optional(const string &str = "");

Make the value string of the option optional and use “str” instead when the
value string is not supplied with the invocation of the option.

Table 1: Supported modifiers to an “Option” of the parser.

] Modifier \ Parameters \ Description
stow<T> T &t | stow the value to variable “t”
store Value *ptr | pass “Option” a “Value” object
to take the value string
optional const string &str | value string is optional,
defaulting to “str”
set int *var | set “xvar” to “value” when the
int value | option is invoked
once int init | only allow the “*var” in “set”
modifier to be set when its value
is “init”
call CallBack *func | call the function “*func” to
void *data | process the value string and
pass it extra “data”
help const string &text | supply a description “text” for
const string &var | the option and refer to the value
string as “var”
help_word const string &var | refer to the value string as

“Var”

show_default

bool do_show

show the default value in
description

Option &set(int *var, int value = - 1);

Set the integer variable “*var” to “value” when the option is invoked.

Option &once(int init = 0);

Allow setting of “*var” only when its value is “init”. This can be used to
prevent multiple invocations of one option or enforce mutual exclusion between
different options.

Option &call(CallBack *func, void *data);

Call the function “*func” with the value string and “data” when the option
is invoked. The extra parameter “data” allows one to, for example, relay the
callback to a member function of an object.

Option &help(const string &text, const string &var = "");

Attach a description “text” to the option while referring to its value string as
“var”. This can be used to produce usage information for the program.

Option &help word(const string &var);

Supply a simple word “var” describing the value string.

Option &show_default(bool do_show = true);

Show the initial or default value of the variable referred in “stow” or “store”
modifiers. This will be the value the program assumes when the option is not
invoked.

3 Adding help and a complex example

The descriptions supplied by the “help” or “help_word” modifiers of “Option”
can be extracted per option by the “Option::get_help” member function or
as a whole by the “Parser: :get_help” method of the parser in the order that
options were added. Additional messages can be added to the text returned by
“Parser: :get_help” through interlacing the option addition process with the
“add_help” method calls to the parser. One can setup customized mechanism
to display the help text when it’s desired. However, for simple applications, it
should suffice to call “Parser: :add_opt_help” to add a standard help option to
the parser. Before the text return by “Parser::get_help”, the standard help
option also prints a header text that can be set by “Parser::set_header”.

A example program demonstrates the usage of the standard help option is
as follows.

#include <arg.hh>
#include <iostream>
using namespace std;

const string version = "1.0";
int main(int argc, char ** argv)
{

arg::Parser parser;

parser.set_header ("arg Testing Program v" + version);
parser.add_help("");

parser.add_help("available options are:");

int n = 10;

parser.add_opt(’n’, "number").stow(n)
.help("set number of nodes to INT", "INT")
.show_default ();

string f;

int f_given;

f_given = 0;

parser.add_opt(’i’, "input").stow(f)
.help("read data from FILE", "FILE")
.set (& f_given).once();

parser.add_opt_help ();
parser.add_opt_version(version);
// parse command line
try {
parser .parse (argc, argv);
}
catch (arg::Error e) {
cout << "Error parsing command line: "
<< e.get_msg() << ’\mn’;
return 1;
}
// check for parameter consistency
if (! f.size()) {
cout << "Need to specify the input file!\n";
return 1;

}

// output

cout << "The parameters are:\n"
<< "npnumber = " << n << ’\n’
<< "input = " << f << ’\n’;

return O;

Users of the program can invoke the “-h” switch to get a list of available
options for the program as follows.

$./arg_exl -h
arg Testing Program v1.0

available options are:

-n, --number=INT set number of nodes to INT (
default: 10)

-i, --input=FILE read data from FILE

-h, --help display this help 1list and exit

-V, --version print program version and exit

[43

Another standard option used in the above example is the “~-version” op-
tion that can be added to the parser with “Parser: :add_opt_version” method.

Localization A theme in the design of arg is to localize all information related
to a command line option. That is demonstrated in the last example where we
put codes related to each parameter into a single block. This save one from
hunting all over the place when, say, just making change to a single parameter.

Consistency There is no simple way to provide a general mechanism that can
specify and check the consistency for the supplied command-line options that’s
not itself Turing-complete. The only assistance provide by the arg parser are
the “set” modifier that can be used to track, e.g., if an option was invoked and
the “once” modifier that can be used to, say, prevent multiple invocations of
an option or enforce mutual exclusion between options.

Exception All errors occurs in parsing the command-line parameters result
in exceptions of the base type “arg::Error”. The corresponding message can
be obtained by the “Error: :get_msg” method of the exception.

4 Callback function

One can specify a callback function to be called upon the invocation of an option
and to process the value string if there is any. A callback function “func” has
the signature:

bool func(int key, const std::string &vstr, void *data);

The arguments passed to the callback are the short option “key”, the value
string “vstr”, and the extra “data”. The return value of the callback function
is used to indicate if the processing of the option is successful. A “false” return
value of the callback function will result in an “OptError” exception.

The extra “data” parameter allows one to parametrize the callback function.
For example, if we pass the pointer to an object as the extra “data”,

Kitchen kitc;
parser.add_opt ("vegi").call(& func, & kitc);

we can setup a callback function that will relays the call to a member function
of the object:

bool func(int key, const std::string &vstr, void *data)

{
Kitchen *k = static_cast<Type *>(data);
return k->cook(vstr);

On a side note, if we were not concerned with additional dependency, this
callback mechanism should probably have been replaced by making use of signal-
and-handler libraries, such as, libsigc++.

5 Subparser

Sometimes, the value string of an option represents some suboptions and should
be processed by a subparser. The “arg::SubParser” is both a “Parser”
and a “Value”. It should be attached to an option of the parser using the
“Parser::store” modifier. As a consequence, we need to allocate the sub-
parser dynamically so that it can be safely deleted by the destructor of the
option. The default separator of the suboptions is the comma “,” but can be
changed with “SubParser: :set_sep” method. For example, with the following
code:

Parser p;

SubParser * sp = new SubParser;

int val = 0;

sp->add_opt ("paraml").stow(val);

double va2 = 1.0;

sp->add_opt ("param2").stow(va2);
sp->add_opt_help ();

parser.add_opt(’0’, "options").store(sp);

We can pass values to val and va2 on the command line like:
$./arg_ex -o paraml=2,param2=0.5

Or, obtain a list of supported suboptions with:

$./arg_ex -o help

6 Value class

A “Value” object is a mechanism to process a value string and store it some-
where, e.g., a variable, as well as to produce a string representation of the stored
value. They should be dynamically allocated before passing to the option and
will be deleted by the option upon destruction. Beside the “StreamableValue”
subclass used by the “Option::stow” modifier to handle storage to types that
support put-to and get-from stream operations (through “<<” and “>>" op-
erators), additional value classes are available in “val.hh”. This currently in-
cludes “SetValue” that represents storage to a choice from a set of names;

http://libsigc.sourceforge.net/

“ListValue” that represents storage to separator (defaulting to comma) sepa-
rated list of values of a given type; and “RelValue” that can be used to either
set or perform relative change to a “double” type variable.

7 Non-option arguments

“ b2

Currently, command line arguments that do not start with “-” or “--” and are
not value strings of any options are swept into a “std: :vector<std::string>”
array that can be access through the member function “Parser::args”. In
future releases of arg, new mechanism might be built to process them as an
ordered list of different variable values.

8 Information

This parser was developed from scratch for some projects in scientific computa-
tion in 2004. The aim is to minimize the coding efforts of adding command-line
parameters to C++ programs. Earlier version of the code was released as part
of ccGo since 2005 under the GPL license. The current standalone version is
released under LGPL and can be downloaded from the information page at
http://ccdw.org/~cjj/prog/arg/. Please send any comments and bug reports
to <cjj@u.washington.edu>.

http://ccdw.org/~cjj/prog/ccgo/
http://ccdw.org/~cjj/prog/arg/
mailto:cjj@u.washington.edu

	A simple example
	Option properties
	Adding help and a complex example
	Callback function
	Subparser
	Value class
	Non-option arguments
	Information

