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Probing a bullfrog retina with spatially uniform light pulses of correlated stochastic

intervals, we calculate the mutual information between the spiking output at the ganglion

cells measured with multi-electrode array (MEA) and the interval of the stimulus at a time

shift later. The time-integrated information from the output about the future stimulus is

maximized when the mean interval of the stimulus is within the dynamic range of the well-

established anticipative phenomena of omitted-stimulus responses for the retina. The

peak position of the mutual information as a function of the time shift is typically negative

considering the processing delay of the retina. However, the peak position can become

positive for long enough correlation time of the stimulus when the pulse intervals are

generated by a HiddenMarkovian model (HMM). This is indicative of a predictive behavior

of the retina which is possible only when the hidden variable of the HMMcan be recovered

from the history of the stimulus for a prediction of its future. We verify that stochastic

intervals of the same mean, variance, and correlation time do not result in the same

predictive behavior of the retina when they are generated by an Ornstein–Uhlenbeck

(OU) process, which is strictly Markovian.

Keywords: retina, mutual information, predictive information, omitted stimulus response, stochastic process

1. INTRODUCTION

The ability to predict or anticipate future events is crucial for the survival of animals. Predicting
dynamical inputs can compensate the latency during information transfer and provide predictive
information for learning and behavior (Berry et al., 1999; Bialek et al., 2001; Hosoya et al., 2005;
Berry and Schwartz, 2011; Leonardo and Meister, 2013). In 2007, Schwartz et al. (Schwartz et al.,
2007; Schwartz and Berry, 2008) reported that there will be spontaneous responses from the
ganglion cells in the retina of salamanders and mice after a periodic light stimulation is abruptly
stopped; with the latency of this spontaneous response being linearly related to the period of the
stopped stimulation. In other words, the retina seems to anticipate when the next pulse should
have occurred and produce a response if the upcoming pulse is missing. This timed response for
the omitted pulse from the retina is known as omitted stimulus response (OSR). Phenomena similar
to the OSR have also been reported for induced ocular motor behavior under periodic light stimuli
in zebra fish larvae (Sumbre et al., 2008) and growth of slime mold under periodic variation of
moisture or temperature (Saigusa et al., 2008).

Ideally, one would like to quantify and model the predictive properties of a retina. Although the
phenomenon of OSR has been discovered for more than 10 years, it is still not clear how to relate
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OSR to the predictive properties of the retina. In OSR,
information of the stimulation is apparently coded into the
timing of the pulses. However, when there are fluctuations in
the inter-pulse intervals of the stimulation, it is difficult to
identify or even produce OSR. Therefore, it is not feasible
to make use of OSR in inferring the predictive properties of
a retina for the general cases of a non-periodic stimulation
which should contain much more information than a purely
periodic one. Bialek and Tishby have introduced the idea of
predictive information based on the statistical properties of the
input and output signal of a data processing system (Bialek
and Tishby, 1999; Rubin et al., 2016). Recently, this idea has
been applied successfully to describe the response of a retina
to a stimulation in the form of a stochastic moving bar by
computing the mutual information, Im (δt), between the input
and output as a function of a time shift δt between the two
signals (Palmer et al., 2015). Here, the output at an instant t is
matched with the input at t + δt. And, a negative δt is defined
as the time delay of the response of the retina with respect to
the input stimulation. Intuitively, the form of Im (δt) should be
determined by the predictive dynamics of the retina. However, it
is still not clear what kind of information one can extract from
Im (δt).

In this work, we report our experimental results in quantifying
the predictive properties of a retina by using the predictive
information method mentioned above. With a retina plated on
top of a multi-electrode array (MEA) and probed by stochastic
light pulses, characteristics of Im (δt) is measured as a function
of the properties of the light pulses, namely, its mean inter-pulse
interval 〈τ 〉 and correlation time τcor. Ourmain finding is that the
location of the peak of Im (δt) can be shifted from δt < 0 to δt >

0 by an increase of τcor, suggesting that retina has the ability to
predict (with some uncertainties) future events in the stimulation
when the stimulation is regular enough. However, this ability
of prediction can only be observed when 〈τ 〉 is in the range of
100–200 ms, similar to that of the OSR phenomenon mentioned
above measured in bullfrog retinas. Furthermore, this predictive
property of a retina can be used to distinguish signals generated
by an Ornstein–Uhlenbeck (OU) process from those generated
by a Hidden Markovian model (HMM), with the signals from
the HMM process being identified as more predictable by the
retina.

2. MATERIALS AND METHODS

Our experiment is similar to that of Schwartz et al. (Schwartz
et al., 2007; Schwartz and Berry, 2008) for the study of OSR.
The responses of a retina stimulated by spatially uniform light
pulses are recorded by an MEA system. The main difference
of our experiments with those of the OSR is that the intervals
between light pulses are not constant and the stimulation is not
stopped abruptly as in the case of OSR. To extend the study of
the phenomenon of OSR, we use fluctuating time intervals (with
a mean similar to that in OSR) between the light pulses and study
the responses from the retina during these stochastic light pulse
stimulations. Note that the periodic light intervals used in OSR is

a limiting case of this stochastic light interval stimulation when
the correlation of the intervals becomes infinite. The followings
are the details of the experiments.

2.1. Experiment Setup
Retinas used in the experiments are obtained under dim red
light from bullfrogs which were dark adapted for 1 hour before
dissection. A piece of retinal tissue (∼ 2× 2 mm2) is fixed on the
MEA by a permeable membrane and perfused with oxygenated
Ringer’s solution (NaCl 100.0, KCl 2.5, MgCl2 1.6, CaCl2 1.0,
NaHCO3 18.0, Glucose 10.0mM). Each retina preparation can
last for 6–8 h for experiments (Ishikane et al., 2005; Xiao et al.,
2013). Retinal activities are recorded by MEA with 200µm inter-
electrode distance and 10µm electrode diameter (MEA60-200-
10-PtBlack, Qwane Bioscience). Extracellular potentials from the
retina are amplified (MEA1060-Inv-BC, Gain: 1,100, Bandwidth:
1Hz–3 kHz) and recorded by MC_Rack software at 20 kHz
sampling rate. Stimulations to the retina are in the form of a
train of stochastic light pulses (pulse duration= 50ms) generated
from an LED (peak of wavelength = 560 nm, intensity= 5 cd/m2)
which illuminates the whole retina after reflected by a 50%:50%
beam splitter. A photodiode (Hamamatsu S1223-01) is placed at
the other end of the beam splitter to monitor the stimulation.
The intervals between pulses are controlled by a computer to
produce a train of pulses with different characteristics which will
be described in details below.

2.2. Generation of Stochastic Intervals
Two types of stochastic intervals are used in our experiments.
The first type is generated by a HMM following the idea
of Palmer et al. (2015), which is associated with a damped
harmonic oscillator driven by a noise, with the ith intervals being
generated as:

τi + 1 = τi + vi1 (1)

vi + 1 = (1− Ŵ1) vi − ω2τi1 + ξi
√
D1 (2)

where v is the rate of change of τ , ξ is a Gaussian noise with zero
mean and amplitude D = 2. The iteration step size 1 is fixed
at 1/60 s. Note that Ŵ/2ω is kept at 1.06 so that the system is
slightly over-damped. To generate the stimulations, a series {τi}
is first created by the iteration of Equations (1) and (2). Then, the
series {τi} is rescaled so to have a standard deviation of 20 ms. An
offset is also added to {τi} to obtain the desired mean 〈τ 〉. With
this method, the correlation of {τi} is not only controlled by Ŵ.
The rescaling of its standard deviation and the addition of offset
can also affect the correlation time of the series. The correlation
time τcor of the resultant stimulation must then be measured
by computing the decay time of its autocorrelation function.
Note that when τcor tends to ∞, we will recover the periodic
stimulation in OSR. With this stochastic pulse train, we can
stimulate the retina using temporal patterns with continuously
adjustable 〈τ 〉 and τcor.

The second type of stochastic intervals is generated by the OU
process (Uhlenbeck and Ornstein, 1930), which is a Markovian
process that includes a return rate T reverting to a mean value in
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the long run. We construct the OU stimulation as:

τi + 1 = τi −
1

T
τi1 + ξi

√
D1 (3)

Identical to the HMM stimulation, 1 is fixed as 1/60 s and ξ is
the Gaussian noise with zero mean and amplitude D = 2. Note
that the mean of series {τi} returns to zero in Equation (3), so
the desired mean 〈τ 〉 and standard deviation of {τi} (fixed at
20 ms as well) can be adjusted afterwards. Similar to Ŵ in the
HMM stimulation, the correlation time of the OU process can
be controlled by T.

Stimulations constructed from OU process do not only have
“first-order” statistics (mean and standard deviation) similar
to the HMM stimulations but also have similar half-life decay
of autocorrelation and auto-mutual information. The main
difference between the OU process and the HMM is that there is
no hidden variable in the OU process. Therefore, any differences
in the responses from a retina under these two stimulations
may imply that the retina can capture “higher-order” signatures
(namely, the hidden variable in HMM) to discriminate between
the two processes.

2.3. Stimulation Protocols
Our experiments consist of recording responses of the retina
under stimulations with different characteristics. The protocol
is to present each set of stimuli continuously for 5 min
in a random order, with an inter-experiment resting time
of 2–3 min. All the experiments are carried out in a
dark room with temperature around 25 ◦C. In the results
reported below, over ten retina samples are used and at least
three retina samples (on average, 10–20 waveforms sorted
from each sample) are used to verify each experimental
results.

2.4. Validity Check and Data Analysis
Responses from the retina are obtained as extracellular potentials
from the 60 channels of the MEA system. Spike sorting
is performed through the T-Dist E–M sorting algorithm
in Offline Sorter software (Xiao et al., 2013). Signals with
ambiguous or multiple waveforms are discarded. To verify
the proper working of our experimental setup, we reproduce
the phenomenon of OSR in our system by following the
protocol in Schwartz et al. (Schwartz et al., 2007; Schwartz and
Berry, 2008). Briefly, we probe the OSR in the bullfrog retina
with periodic stimuli. The peristimulus time histogram from
repeated trials of periodic stimuli is obtained and the relative
latency of the OSR is measured (Figure S1 in Supplementary
Information).

In the experiments reported below, error bars in all the
figures reflect the standard deviation between sorted channels.
Therefore, the deviation must not be taken as the uncertainties
of response from a single recorded channel, which can be
quite precise (within 5 ms) in time for OSR. There are strong
variations in the recorded responses from different channels
of the MEA. As the mutual information between the response
recorded by the MEA and the stimulation will be used in
this work to quantify the predictive power of a retina, a

channel is included for analysis only when its corresponding
measurement is significantly (two times) higher than that
obtained from its shuffled (time-randomized) version after the
bias correction described below. In other words, we exclude
channels which record firing patterns that share little information
with the stimulation. Less than 25% of the selected units are
removed after this validity check. We note that while the
deviating performances of the removed channels might signify
some different response types, the removal does not affect
the conclusion of our statistical tests to be described below.
More details of this removal criteria will be given below.
Also, because of the finite size of measured data (limited
sampling), there will be a bias in the calculation of mutual
information. In all mutual information data reported below,
the data have been bias corrected by using a method proposed
by Strong et al. (1998). Details of this bias correction and
the rationale for the choice of other parameters (number of
states and bin size) for mutual information computation can
be found in the “Information Measurements” Section (Figures
S2–S4) of the Supplementary Information, where one can
see that the measured mutual information is robust with
respect to the choices of parameters. Note that one could also
compute the cross-correlogram between the stimulations and
the responses of the retina for characterizing its input–output
properties. However, as shown in Figure S8 of the Supplementary
Information, the cross-correlograms depend strongly on the
choice of parameters and their physical meaning for prediction
is difficult to interpret.

Finally, to validate our findings, we perform the same
experiments on more than five retinas to confirm that they give
consistent results with what are reported in the current paper.

3. RESULTS

3.1. Predictive Information for Stochastic
Temporal Patterns
Figure 1a shows inter-pulse-interval τ of a typical stochastic
pulse train used in the experiments as a function of time (with
a discrete time step of 5 ms). The pulse train is characterized
by three parameters, namely, the mean inter-pulse interval 〈τ 〉,
the correlation time τcor between inter-pulse intervals, and the
standard deviation of τ . During each experiment reported below,
such a pulse train is presented to the retina for 5 min. Figure 1b
is the raster plot for the firings of the retina recorded by the
MEAwhile Figure 1c shows the average firing rate obtained from
Figure 1b.

Mutual information at different time shift δt between the
stimulation (Figure 1a) and response (Figure 1b) can then be
calculated by using appropriate binning of the stimulation
and response into discrete states. In all the results reported
here, the bin size is always 50 ms. Figure 2 is the computed
mutual information between stimulation and response from
sorted firing waveforms in Figure 1. The interval τ of the
stimulation is partitioned into 25 equally distributed states
(see Figure S5 in the Supplementary Information for the
distribution of states) while the number of spikes in one
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FIGURE 1 | Stochastic pulse intervals and the induced retinal firing patterns.

(a) Time series of pulse intervals generated by the iteration formula: 〈τ 〉 = 200

ms,
√

〈(τ − 〈τ 〉)2〉 = 20 ms, and τcor = 2 s. (b) Raster plot showing firing

timestamps from 60 channels under the input shown in (a). (c) Average firing

rate of the population recorded in (b) with a bin size of 50 ms. To calculate

mutual information, the stimuli shown in (a) with varying pulse intervals are

divided into 25 equally distributed states shown in red. See Figure S5 for the

partition of states in Supplementary Information.

time window is used as the state index for the response
(R = {r1, r2, . . .}). The number of states for the response
is then the maximum number of spikes for each channel
within a time window of 50 ms. The maximum number of

FIGURE 2 | An example of measured Im (δt) with stimulation shown in

Figure 1A. Ism (δt) computed from shuffled data is also shown to serve as a

base line. Three different Im (δt) obtained from three sorted signals in the same

experiment are shown in the inset to demonstrate the variability of the data.

The bias due to limited sampling has been corrected for the measured and

shuffled data shown here.

spikes within the 50 ms window is typically 10–15 in our
recordings. The mutual information at time shift δt is then
given by:

Im (S,R, δt) =
∑

i

p
(

si, ri−k

)

log2
p
(

si, ri−k

)

p (si) p
(

ri−k

) (4)

where p (xi) is the probability of having a state xi and p
(

si, ri−k

)

is
the joint probability of the state

(

si, ri−k

)

. Note that the difference
k ≡ δt/1 in time indexes between s and r denotes a shift in time
of δt. It can be seen from Figure 2 that the Im (S,R, δt) has a peak
located at negative δt and it is non-zero for δt > 0. The location
of the peak at negative δt indicates that maximum information
is shared between S and R when R lags behind S, confirming our
intuition that the retina takes some time to reflect/process the
information contained in S in producing R.

Similar to the finding of Palmer et al. (2015), the non-zero
value of Im (S,R, δt) in Figure 2 for δt > 0 indicates that the
firing patterns in retina carry some information on the future
events in S (t) from its history. In fact, Im (S,R, δt > 0) is termed
predictive information by Bialek and Tishby (1999). It can be
seen that Im (S,R, δt) is fluctuating around a positive bias below
0.2 bits/s even when δt is much longer than the correlation time
of S. One would expect Im (S,R, δt) to be zero for such a case.
This non-physical property of the measured Im originates from
the fact that we are computing Im from a finite time series. Bias
corrections for finite data mentioned earlier have been applied in
Figure 2. Without the bias corrections, the bias would have been
higher than 0.5 bits/s. It seems that the bias correction can only
remove part of the bias due to limited sampling. In order to test
whether 0.2 bits/s is the baseline of our measured Im, randomly
shuffled data (either states of stimuli or firing rates) are used to
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compute the mutual information Ism. Ideally, the I
s
m with shuffled

data should be zero for all δt. Also shown in the figure is the
Ism (δt) curve with shuffled data after bias correction. It can be
seen to also fluctuate around 0.2 bits/s, confirming that Im0 =
0.2 bits/s is the baseline value of our experimentally measured
mutual information. As mentioned earlier, not all channels are
included for analysis. The criteria is based on the difference
between Im (δt) and its shuffled version, Ism (δt) as shown in the
figure. If the total area under the curve Im (δt) (−5, 000ms <

δt < 5, 000ms) is less than two times of that for Ism (δt), the
channel will not be included for analysis.

3.2. Measuring Predictive Power
To visualize how much information is being shared between S
and R, Figure 3 is a comparison of Im (S, S, δt), Im (R,R, δt), and
Im (S,R, δt) from data displayed in Figures 1, 2. It can be seen
that only a very small percentage of the information is being
shared between S and R. To quantify the amount of predictive
information extracted by the retina, we define the predictive
power based on measured Im as the ratio between the two areas
in Figure 3 as Pp (S,R) = a/A, where A and a are the area under
the curves Im (S, S, δt) and Im (S,R, δt) for δt > 0, respectively.
This definition satisfies the intuitive notion that Pp (S, S) or
Pp (R,R) equals to 1, since the predictive power of a signal for
itself is fixed as 1, and will allow the comparison of predictive
information between different experiments. A remarkable feature
of Figure 3 is that while both Im (S, S, δt) and Im (R,R, δt) decay
symmetrically about δt = 0, Im (S,R, δt) seems to decay more
slowly for δt > 0. Since both R and S are symmetric with respect
to time shift, the asymmetry of Im (S,R, δt) possibly comes from
the anticipative nature of the retina dynamics in generating R.
To test whether the conventional linear–nonlinear (LN) model
(Chichilnisky, 2001) can capture these special features, we have
performed a standard procedure to estimate the firing rate from
the stochastic stimulations used in our experiments. Details of
the LN model used here can be found in the Supplementary
Information (Figures S6, S7). It can be seen that the LN model
fails to capture the asymmetry observed in the experiments
and over estimates the response delay. As will be shown below,
the asymmetry seen in the experiment can be reproduced by a
“gedanken” retina which has anticipative power.

3.3. Prediction Depends on Statistics of
Stimulation
With the normalization introduced in Figure 3, we can compare
the predictive power Pp for stimulations with various 〈τ 〉 and
τcor. Figure 4 shows the measured dependence of Pp on 〈τ 〉 and
τcor by experiments similar to those shown in Figure 3. Results
shown in Figure 4 are obtained from one single retina. The Pp
is measured for each channel of the MEA and error bars are
obtained from the spread of these measured values. With fixed
τcor = 2 s, it can be seen from Figure 4A that Pp falls off to a
very small value around 〈τ 〉 = 200–250 ms. Note that a time
scale of 200 ms is also the upper limit for a periodic stimulation
to produce OSR in the bullfrog retina. Figure 4B shows Pp under
stimuli with different τcor when 〈τ 〉 is fixed at 200 ms. Note that
the data is plotted in the inverse of τcor. The idea is that the

FIGURE 3 | Comparison of the three Im (δt) as described in the text and the

definition of predictive power (Pp). The areas A and a as indicated are areas

under the curves Im
(

S,S, δt
)

and Im
(

S,R, δt
)

, respectively, for δt > 0. Note

that both Im
(

S,S, δt
)

and Im (R,R, δt) are symmetric about their respective

peaks but Im
(

S,R, δt
)

is not symmetric (inset). The oscillation observed in

Im (R,R, δt) is caused by the quasi-periodicity of the stimulation light pulses.

amount of information of the varying pulse interval contained
in the time series of the stimulation should increase with the
inverse of its correlation time because an purely periodic signal
(infinite correlation time) will not contain any information. With
this interpretation, Figure 4B indicates that the predictive power
of the retina seems to be at its maximum when the information
content of the stimulation is low and tends to its minimum
when the information content is high. The characteristic time
scale (halfway between the max and the min) determined from
Figure 4 is when τcor ≈ 2.5 s.

One interesting feature of the measured Im during our scan
of τcor at fixed 〈τ 〉 is that the peak location of the Im shifts from
negative δt to positive δt as τcor is increased. Figure 5 shows the
dependence of δtp as a function of τ−1

cor where δtp is the distance
of the peak location of Im from the line of δt = 0. The inset
of Figure 5 shows the definition of peak location δtp and the
forms of Im (δt) for τcor = 0.2, 2.0, and 4.0 s. Intuitively, one
might expect δtp to be always negative because it will always
take time for stimulations just to propagate through the different
layers and synapses of the retina. That will be true if the retina
is just a passive filter. However, if the retina is actively producing
anticipative signals for the incoming events, a peak of Im (δt) at
δt > 0 can be its signature.

To test this later idea, we simulate a situation in which a
“gedanken” retina is receiving input from our stochastic pulses
at time t but then generated response at time t by marching
Equations (1) and (2) forward N steps while using ξi = 0, its
most probable value. This gedanken retina is a mathematical
construct based on the two equations we used to implement the
HMM. Basically, we just pretend that there is an ideally predictive
(“gedanken”) retina which can compute the velocity based on
the input position. In other words, this “gedanken” retina is
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FIGURE 4 | Predictive power (Pp) depends on the statistical properties of the

simulation light pulses. (A) Measured Pp as a function of 〈τ 〉 with τcor = 10〈τ 〉
for each 〈τ 〉. (B) Measured Pp as a function of 1/τcor with 〈τ 〉 fixed at 200 ms.

Note that Pp is computed from the mutual information measurements after

bias correction. By applying t-test, Pp under 〈τ 〉 = 200 ms is significantly

higher than those under 〈τ 〉 = 275 ms and 〈τ 〉 = 300 ms. For the effects of

τcor, Pp under 1/τcor = 0.05 is significantly higher than under 1/τcor = 5. The

results are obtained from the same retina, and the error bars indicate the

deviation between 17 sorted signals. Specifically, 2 out of 19 channels are

excluded after the validity check mentioned in the main text. The deviating

performance might signify different response types under stimulation with large

τcor. Note that the conclusions of our statistical tests are not affected by this

validity check.

anticipating the future of the stochastic input from its present
value N step ahead by using the velocity information. With this
construction of response, we have implicitly assumed that the
“gedanken” retina already “learned” the correct parameters of
Equations (1) and (2) from it past experience. Figure 6 shows
the results of such a simulation with various N. It can be seen
that the Im (δt) indeed has peaks at positive δt, confirming our
intuition that a peak of Im (δt) at positive δt indicates anticipative
dynamics of the system. Also, the asymmetry of Im(δt) observed
in the experiment is well reproduced here. Note that the shift
of the peak is larger when N is bigger but the peak value is
smaller. That means when the “gedanken” retina is predicting

FIGURE 5 | Latency to peak δtp of Im (δt) as a function of τcor obtained from

19 sorted signals in the same retina. The left inset shows the definition of δtp
and the measured Im (δt) with τcor = 0.2 (blue), 2 (red), and 4 s (black). Right

inset shows the relation between δtp and Pp (bias corrected for limited

sampling) calculated from the same data. By applying t-test, we find that δtp is

significantly different for 1/τcor = 0.24 and 1/τcor = 5.

FIGURE 6 | Asymmetry and shift of peak of Im(S,R, δt), where Rs are the

responses produced by the “gedanken” retina aiming to estimate a future

stimulus. In producing the response RτN, the “gedanken” retina targets the

future that is N steps ahead of the current stimulus. The input signal is

produced from the same HMM process used in experiments. Note that the

peak of Im(S,R, δt) moves to the positive time shifts and decreases as the

retina attempts to predict further into the future.

too far into the future, its prediction is less accurate. When
comparing our experimental results with different correlation
times (Figure 4B) with this simple simulation, it is clear that the
real retina is performing prediction. When the incoming signal is
more regular (longer correlation time), it can predict deeper into
the future.
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3.4. Interpretation of Predictive Information
Another remarkable feature of Figure 6 is that the peak value
of the Im (S,R, δt) from the “gedanken” retina can be higher
than that of Im (S, S, δt) at the same δt. This means that
the “gedanken” retina can have a better prediction about
the stimulation in the future than by using the information
contained in time series of the stimulation, {Si}. This is because
{Si} is produced by an HMM. There is a hidden variable
vi. The amount of information contained in {Si} can be
smaller than that generated by the “gedanken” retina which
knows about both variables by Equations (1) and (2). In
other words, prediction is possible in this case because the
“gedanken” retina can make use of the hidden variable. If this
reasoning is correct, prediction from the retina should not
be possible if the stimulations are generated from a Markov
process.

Experiments with stimulations generated by an OU process,
which is a Markovian process with no hidden variables, are
carried out to test this latter idea. To generate the stimulations
for the experiments, we tune the OU process in such a way
that its time scales and fluctuations are similar to the HMM
stimulations used in the experiments reported above. Figure 7
is Im obtained from the experiments with the OU process for
different correlation times. It can be seen that the peaks of Im
from the OU process are all located at δt < 0 and more
or less independent of the correlation time of the stimulation.
Figure 7 supports the notion that the retina can only perform
predictions on an incoming signal with a hidden variable.
These results show that the retina somehow manages to make
use of this hidden information to anticipate the future time
intervals and therefore produce a peak of Im which is located
at δtp > 0.

4. DISCUSSION

Although the periodic inputs used in OSR and the stochastic
pulses used in this study seem to be quite different, the periodic
pulses are in fact a limiting case of the stochastic pulses when
the correlation time of the inter-pulse intervals becomes infinite.
With this consideration, one can think of the periodic pulses
used in the phenomenon of OSR as a carrier of information very
much like the carrier frequency in an FM radio signal and the
information is being encoded into the deviations (fluctuations)
of this carrier period. Therefore, the stochastic pulses (with a
fixed mean period) used in our experiments are then encoding
information in its deviations from the mean. The amount of
information encoded can then be characterized by the correlation
time: the longer the τcor, the less the amount of encoded
information. With a periodic stimulation (infinite correlation
time), there is no information encoded. In fact, this carrier wave
picture is supported by our finding that both the OSR and the 〈τ 〉
for optimal prediction have the same time scale.

We have therefore extended the study of anticipative
capability of a retina from probing it with period stimulations
to stochastic stimulations. Although the responses of the retina
induced by these two types of stimulations seem to be very

FIGURE 7 | Discriminating OU process and the HMM by a retina. Measured

Im (δt) with stimulations generated from an OU process (red) and an HMM

(black), each with two different correlation times. Comparison of δtp under the

two different types of stimulations with varying τcor is shown in the inset. All

measured mutual informations are bias corrected for limited sampling.

different, they are of the same nature. In the OSR, a clear
transient, spontaneous (anticipative) response can be observed
after the termination of the periodic stimulations, while there
seems to be no clear anticipative responses can be identified
after the termination of the stochastic stimulations. However, the
results in Figure 5 show that the retina is generating signals ahead
of the stimulation with similar information. In other words, the
retina is actively producing spontaneous output corresponding to
future events of the stimulation, similar to the case of the OSR. Of
course, as we have shown above, prediction is possible only when
the incoming signal possesses predictable characteristics such as
that generated from a HMM. For signals from the unpredictable
OU process, prediction from the retina is impossible. Similar
mechanisms of prediction might account for the results reported
by Palmer et al. (2015), where the predictive information in a
retinal population under a natural scenery input is significantly
higher andmore long-ranged than those under a random flicking
checkerboard.

At first sight, it might seem odd that the response from the
retina at present is related to the stimulation at a future time.
It should be noted that the future stimulus is not influenced
by the output of the retina. There is no violation of causality
and the predictive information must have been obtained from
the interaction of the retina with the past or current stimulus
input. However, this simple version of predictive behavior, that
is, carrying non-zero predictive information, is not in itself
impressive as it can be exhibited by a passive sensor with or
without a delay. Generally, we can expect the mutual information
between the output of a passive sensor and its stimulus input
to peak at the current time or with a lag (negative δt) that
corresponds the processing or propagation time of the system.
To produce an output that is more informative of the stimulus
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at a targeted time in the future than at the current moment
requires the system to filter out variability that is more pertinent
to the current stimulus but has less bearing at the targeted
time in the future. And, this stronger version of predictive
behavior is what we discovered to be exhibited by the retina.
Presumably, this predictive capability is implemented in retina
through a population of cells and their specially wired circuitries.
However, we did not perform experiments to determine the
cell types explicitly. According to Schwartz et al. (2007) and
Palmer et al. (2015), the OSR and predictive behaviors of the
retina are not restrictive to certain cell types. Also, from our
experimental evidence of OSR-test (see Figure S1, Supplementary
information), it is very likely that the recorded channels are
dominated by OFF-sustain ganglion cells. It would be important
to understand how biological systems can implement this
predictive behavior through different response types, retinal
circuitries, and physiological mechanisms.

Finally, we would like to point out that, in our experiments,
incoming information is coded into time intervals while we are
using firing rates of the retina to compute themutual information
between the input and the response. This coding strategy is
consistent with the dependency on pulse intervals of firing rate
in OSR (Schwartz and Berry, 2008). However, this is probably
why themutual information obtained from experiments is always
<5% of the incoming signal. A comparable quantification could
possibly be obtained from alternative coding strategies such as
considering spike configurations of a population of cells. In the
case of our “gedanken” retina, we can extract a much higher
amount of information because the coding is known. Note also
that the shift of the peak in Figure 6 (gedanken retina) is not
proportional to the number of steps N for the targeted future.
There seem to be a maximum shift in the peak position even for
very largeN. Presumably, this maximum of shift of peak position
is controlled both by the stochastic nature of the input signals
and the predictive mechanism of Equations (1) and (2). For a
real retina, information about this predictive mechanism can be
revealed by this maximum time shift of the peak of the Im (δt)
curve. For moving stimuli, it is relatively known that neural field

models (Mi et al., 2016) or cascade model with feedback control
(Berry et al., 1999) for a retina can successfully produce the
anticipative tracking of a moving object spatially. This implies
that the peak of Im (δt) curve could also be maximized at a
positive time shift for a stochastic moving bar. It is still less well
understood how such an active process is produced in the time
domain. Knowledge of this mechanism should be helpful for the
understanding of this anticipative dynamics from the physical
structure of the networks in the retina.
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