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Abstract. Using a hidden Markov model (HMM) that describes the
position of a damped stochastic harmonic oscillator as a stimulus input
to a data processing system, we consider the optimal response of the
system when it is targeted to predict the coming stimulus at a time shift
later. We quantify the predictive behavior of the system by calculat-
ing the mutual information (MI) between the response and the stimulus
of the system. For a passive sensor, the MI typically peaks at a nega-
tive time shift considering the processing delay of the system. Using an
iterative approach of maximum likelihood for the predictive response,
we show that the MI can peak at a positive time shift, which signifies
the functional behavior of active prediction. We find the phenomena of
active prediction in bullfrog retinas capable of producing omitted stimu-
lus response under periodic pulse stimuli, by subjecting the retina to the
same HMM signals encoded in the pulse interval. We confirm that active
prediction requires some hidden information to be recovered and uti-
lized from the observation of past stimulus by replacing the HMM with
a Ornstein–Uhlenbeck process, which is strictly Markovian, and showing
that no active prediction can be observed.

Keywords: Retina · Mutual information · Predictive dynamics · Omit-
ted stimulus response · Stochastic process

1 Introduction

Biological systems are built to provide functions that help the continuation of
the organisms. An important function for the neural systems in animals is to
predict future conditions of their environment so the animals can anticipate
coming events and react accordingly to increase their chance of survival. An
example of such anticipation is the omitted stimulus response (OSR) which has
been observed in lives as simple as amoeba [1] or even organs such as retina
in animals [2]. In the OSR phenomena of retina, the periodicity information
of the input stimulus is retained by the retina and a well-timed response is
produced right after the periodic stimulus is removed. Such is a very simple
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case of anticipation and it has been shown that the function of producing well-
timed OSR can be realized with an adaptive FitzHugh–Nagumo excitable and
oscillatory system [3].

Naturally, it is desirable to quantify the predictive properties of retina
through the study of OSR. However, while a strictly periodic stimulus carries
minimal information rate, it is difficult to identify or even produce OSR when
there are fluctuations in the inter-pulse intervals. Furthermore, it is unclear how
to differentiate behaviors of the systems that are acting as a passive sensor or
recorder from that are actively predicting coming events. To quantify the pre-
dictive properties of a data processing system, Bialek and Tishby introduced the
idea of predictive information based on the mutual information (MI) between the
momentary output of the system and stimulus input at a time shift later [4,5].
This idea was applied to describe the response of a retina to a stimulus in the
form of a stochastic moving bar [6]. The retina was shown to provide predictive
information at near optimal level under a constrain of limited memory capacity.

In this paper, we consider the hidden Markov model (HMM) that controls
the stochastic moving bar in [6] and quantify how well such a stimulus can be
predicted by an idealized system. We show that by using the hidden variable
of the HMM, one can actively produce signals that is optimized to match the
stimulus at a targeted time in the future. By encoding the same signal in the
pulse intervals to the retina in a setup that can produce OSR, we show that
the retina can perform a similar active prediction of coming signals when the
information rate of the stimulus is low [7]. We propose that such active prediction
is only possible with the help of some hidden information such as that in the
HMM. This proposal is checked in a modification of the retina experiment where
the HMM is replaced by an Ornstein–Uhlenbeck (OU) process [8], which has no
hidden information, while maintaining the mean, correlation time, and standard
deviation of the input signal, and no active predictions can be observed.

2 Predicting Stochastic Signal with Hidden Variable

We consider a discrete time sequence signal {τi} from a hidden Markov model
following the idea of [6], which describes a damped harmonic oscillator driven
by a noise. The generation of τi is described by the equations,

τi+1 = τi + viΔ (1)

vi+1 = (1 − ΓΔ) vi − ω2τiΔ + ξi
√

DΔ (2)

where the hidden variable v is the change rate for the observable τ ; ξ is a unit
Gaussian noise with zero mean and D = 2 controls the amplitude of the noise
term. We fix the iteration step size Δ at 1/60 s and keep Γ/ (2ω) at 1.06 so that
the oscillator is slightly over damped. Figure 1 shows a typical input sequence of
{τi} generated by the HMM.

Imagine a smart agent who has been observing the sequence for a very long
time. It must be able to recover the dynamic Eqs. (1) and (2) as well as all
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Fig. 1. Stimulus input generated by the dynamic Eqs. (1) and (2) compared with the
prediction from n = 10 steps earlier using Eqs. (3)–(5)

the parameters used to generate the sequence. For a prediction of the stimulus
at n-th step in the future, the agent can simply iterate the dynamics (1) and
(2) for n steps to obtain τt+n where t is the current time. The only missing
information for such iterations is the actual value of the noise ξ at each step.
Nonetheless, noting that the distribution of the noise ξ can also be obtained from
past observations, the agent can choose to use the most probable value ξi = 0
at each step in performing the iterations as described below.

With the observations τi−1 and τi, we can derive the value vi−1 as

vi−1 =
1
Δ

(τi − τi−1) . (3)

We then estimate the value of vi, assuming the most probable value of ξi−1,
namely, zero:

ṽi = (1 − ΓΔ) vi−1 − ω2τi−1Δ (4)

where the tilde over a symbol denotes an estimation. The next τi+1 can thus be
estimated by

τ̃i+1 = τi + ṽiΔ. (5)

For a prediction targeted at n steps in the future, the iterations (3)–(5) are
repeated n times to obtain τ̃i+n. The result of the prediction for 10 steps in the
future is compared in Fig. 1 with the stimulus input at the targeted time. As
shown in Fig. 1, the predictive response has greater fluctuations than the actual
stimulus. This likely follows the fact that predictions are based on trends which
can overshoot and be corrected by new observations. Similar behavior can be
found, for example, in a financial market, where the derivative securities, which
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are speculative in nature, are generally more volatile than the corresponding
securities.

We calculate the mutual information between the predictive response actively
produced by the idealized system and the stimulus input as a function of the
time shift between the two signals, for different numbers of targeted time steps
n into the future. The results are shown in Fig. 2, where we can see the MI
peak moves towards the positive δt direction as the system actively predicts
further into the future. From these results, we can also see the peaks of the
MI are generally above the auto-mutual information curve. This indicates that
the predictive output of the system is more informative of the future stimulus
than the signal itself at these time shifts. This is only possible when the hidden
information can be recovered from the history of past stimulus and utilized by
the system in producing the predictive responses.

Fig. 2. Mutual information as functions of time shift for active predictive responses
produced by an idealized system for different number of targeted time steps. The blue
curve shows the auto-mutual information which can correspond to a “prediction” at
0 step ahead using the input signal itself as the output. The dashed green line is the
mutual information between the full internal state (v, τ) of the HMM and the presented
input τ , which represents the upper bound of the mutual information any processing
system can have with the input signal (Color figure online)

In Fig. 2, we also calculate the mutual information between the full internal
state of the HMM, which includes both v and τ , and the stimulus input τ of the
system at different time shift. Since the full internal state of an HMM is all that
is relevant for producing the next state of the observable τ , this represents an
upper bound of the mutual information the output of any system can have with
the stimulus. From our calculation shown in Fig. 2, we see the MI of the active
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predictions using the iterative method described above closely approaches the
upper bound at the time shifts that the responses are targeted to predict. On the
other hand, while the peak position δtp of the MI curve becomes more positive
when targeted time steps n becomes larger, its movement stalls significant with
increasing n. Therefore, while the position of the MI peak is an indication of an
active prediction, it does not faithfully reflect the target of such prediction.

3 Active Prediction in Retina

To study the predictive behavior of a retina, our experiment is similar to that
of Schwartz et al. [2,9] for the study of OSR except that retinas from bullfrogs
are used in our setup as detailed in [7]. Instead of using a periodic pulse train
as stimulus, we use it as a carrier and modulate the signal τi generated by the
HMM dynamics (1) and (2) in the variation of the pulse intervals si as follows:
After {τi} is generated, the signal is rescaled so to have a standard deviation of
20 ms. An offset around 200 ms is also added to {τi} to obtain the desired mean
〈s〉 so to keep the system operating near the dynamics range of OSR. Beside the
value of the Γ parameter in the HMM, the correlation time of si is also affected
by the rescaling as well as the offset process. The values of correlation time as
shown in Fig. 3 are measured retroactively by computing the decay time of the
autocorrelation function of the pulse intervals.

Fig. 3. Mutual information curves between input and output from the retina under
pulse stimulus with stochastic intervals generated from hidden Markov model (blue)
and Ornstein–Uhlenbeck process (green) with different correlation time as indicated.
The Inset shows the peak positions of the curves as a function of correlation time of the
stimulus with error bars indicating variations across recorded channels (Color figure
online)
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Beside the stimulus generated by the HMM, we also subject the retina to the
stimulus generated by a discrete OU process, following the dynamics

τi+1 = τi − 1
T

τiΔ + ξi
√

DΔ (6)

where D and Δ are identical in values to that in the HMM described above, while
the parameter T is used to control the correlation time of the stimulus generated
by the OU process. The same scaling and offset procedures are performed on
the OU interval sequences to ensure that they have the same mean and variance
as that from the HMM. We see in Fig. 3 the MI peaks at δtp < 0 for both kinds
of the stimulus inputs when the correlation time is short, e.g., τcor = 2, which
corresponds to high information rate from the input. For low information rate,
or long correlation time, τcor � 3, the peak position of the MI shifts to δtp > 0 in
the case of the HMM, indicating the behavior of active prediction. On the other
hand, the MI peak for the OU stimulus remains at the same δtp < 0 indicative
of a processing delay that can be expected for a passive sensor.

4 Discussion

As shown above, using the hidden information recovered from past observations
of an HMM stimulus, one can actively produce responses that are optimally
informative of the stimulus at some targeted time in the future. Such active
prediction can be more informative of the stimulus for the targeted time than a
perfect sensor that faithfully copies the input to the output. It is long realized
that some biological systems such as retinas are doing more than a sensor in
processing the input signal, for example, in producing the OSR. Here, we pro-
pose to quantify the active prediction of the system by considering the mutual
information between the input and output at different time shifts as suggested
by Bialek and Tishby [4].

We identify the functional behavior of active prediction when the peak of
the MI curve moves to a positive time shift indicating the instant output of
the system is most informative of the stimulus input at another instance in
the future. There are two key components to this behavior: the retention of
information from the past stimulus and the computation to filter out information
that is not pertinent to the stimulus of the targeted time. The former allows the
recovery of hidden information that are not directly observable by the system.
The end point of this recovery is the full internal state of the upstream system,
e.g., the HMM, that generates this stimulus. This full internal state has an
MI curve with the stimulus as shown by the green dashed line in Fig. 2 for
the specific HMM we consider here. Without further constraints, such as the
information bottleneck [10], on the processing system, this limit can be simply
approached by a system that records everything and outputs everything.

The second key point of the active prediction is the computation, or the
filtering of information. It can tell the intention of the system. In our case, it is
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the number of time steps n to the future targeted by the predictive behavior of
our idealized system. We note that while for small n, the peak of MI is close to
the target, for large n, the peak position is actually a significant underestimate
of n. The target n is best estimated by the point where the MI curves approach
the upper bound as shown by the green dashed line in Fig. 2. Unfortunately, this
upper bound of MI is not readily available in an experimental system and real
biological systems are likely not optimally predictive of their stimulus.

Finally, we show that a system can only produce active predictions for stim-
ulus that is actively predictable, that is, there is some hidden information that
can be recovered from past observations and used in bettering the prediction.
For the OU stimulus input, while there is nonzero predictive information in the
sense defined in [4], the peak of MI remains at a lag δt < 0, and the response
produced by the retina is never actively predictive.

5 Conclusion

In this paper, we introduced the concept of active prediction, which can set
apart some information processing systems from passive sensors. We showed
how such functional behavior can be identified through the calculation of mutual
information between stimulus and response. And, we provided evidence of such
predictive behavior in a bull frog retina.
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