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Abstract Developing networks of neural systems can
exhibit spontaneous, synchronous activities called neural
bursts, which can be important in the organization of func-
tional neural circuits. Before the network matures, the activ-
ity level of a burst can reverberate in repeated rise-and-falls
in periods of hundreds of milliseconds following an initial
wave-like propagation of spiking activity, while the burst
itself lasts for seconds. To investigate the spatiotemporal
structure of the reverberatory bursts, we culture dissociated,
rat cortical neurons on a high-density multi-electrode array
to record the dynamics of neural activity over the growth
and maturation of the network. We find the synchrony of the
spiking significantly reduced following the initial wave and
the activities become broadly distributed spatially. The syn-
chrony recovers as the system reverberates until the end of
the burst. Using a propagation model we infer the spread-
ing speed of the spiking activity, which increases as the
culture ages. We perform computer simulations of the sys-
tem using a physiological model of spiking networks in two
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spatial dimensions and find the parameters that reproduce
the observed resynchronization of spiking in the bursts. An
analysis of the simulated dynamics suggests that the deple-
tion of synaptic resources causes the resynchronization. The
spatial propagation dynamics of the simulations match well
with observations over the course of a burst and point to
an interplay of the synaptic efficacy and the noisy neural
self-activation in producing the morphology of the bursts.
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1 Introduction

During the development of neural systems, spontaneous and
synchronous activities can appear following the outgrowth
of neurites and before the availability of external stimulus
inputs (Segev et al. 2003; Meister et al. 1991). These activ-
ities are believed to play an important role in the formation
and organization of functional neural circuitries (Katz and
Shatz 1996; Turrigiano and Nelson 2004; Harris 1981; Crair
1999). The investigation of these network activities can help
to elucidate the cellular and network mechanisms involved
in neural development (Zhang and Poo 2001; Bi and Poo
2001; Blankenship and Feller 2010; Kerschensteiner 2014)
and will lead to a better understanding of the functioning of
a brain (Penn and Shatz 1999; Hua and Smith 2004; Chi-
appalone et al. 2006; Pu et al. 2013). Among approaches to
study the spontaneous activity of developing neural systems,
dissociated cultures of cortical or hippocampal neurons on a
multi-electrode array (MEA) have been used for decades as
experimental models for observing the dynamics of grow-
ing networks (Thomas et al. 1972; Pine 1980; Gross et al.
1982; Potter and DeMarse 2001).
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Usually, spontaneous activities can be observed after
about a week in vitro and the activities are later synchro-
nized into episodic network bursts (Maeda et al. 1995;
Chiappalone et al. 2006). Interesting patterns of these neural
bursts have been reported (Van Pelt et al. 2004; Wagenaar
et al. 2006; Raichman and Ben-Jacob 2008), where the
activity level of firing rate in the burst can have repeated
peaks of rise-and-falls called reverberations at a time scale
of hundreds of milliseconds following the initial spike of
activities (Lau and Bi 2005). These so-called “super bursts”
(Wagenaar et al. 2006) can last for seconds and, for their
similarity in the time scales, are thought to be important
to understand cognitive functions such as working memory
on the cellular and network levels (Wang 2001; Lau and
Bi 2005; Compte 2006; Mongillo et al. 2008; Volman and
Gerkin 2011; Bermudez Contreras et al. 2013; Dranias et al.
2013).

There have been active studies on the initiation of in vitro
neural bursts (Feinerman et al. 2007; Eckmann et al. 2008)
focusing on both the role of hub neurons (Cossart 2014;
Schroeter et al. 2015) and topological effects (Orlandi et al.
2013). The development of high-density MEA systems has
enabled more detailed investigation of the activity propaga-
tion in the neural bursts. Notably, the collective dynamics of
spiking neurons such as center-of-activity trajectory (CAT)
allow the identification of a propagation phase and a rever-
beration phase in the progression of a burst event (Gandolfo
et al. 2010).

In the current study, we use a similar high-density MEA
system to investigate reverberatory bursts observed in the
development of dissociated cortical cultures. Instead of con-
sidering reduced dynamics such as principal components or
CAT, we use a propagation model to predict the location of
each occurring spike. The effectiveness of such prediction
allows the classification of the spikes into evoked and spon-
taneous ones, and can be used in reverse for an inference on
the spreading speed of the recorded spiking activity. We find
a recovering dominance of the evoked spikes over the rever-
beratory phase of a burst following their reduction after the
initial propagating wave.

We implement a physiologically realistic model of neu-
ronal systems (Volman et al. 2007) on a geometrically-
constrained, two-dimensional network and identify sets of
parameters that can produce reverberatory bursts qualita-
tively similar to the experimental observations. With all
dynamical variables being available in computer simula-
tions, we clarify the roles played by the neuronal noise as
well as the depletion of synaptic resources in the continu-
ation and termination of the reverberatory bursts. We find
that the depletion, which is responsible for terminating the
burst events (Cohen and Segal 2011), is also important in
restoring the synchrony of reverberatory activity during the
bursts.

2 Materials and methods

2.1 Cell cultures and experimental setup

Cortical neurons were dissociated fromWistar rat at embry-
onic day 17 (E17). Tissues were digested by 0.125 % trypsin
and plated on the BioChip 4096E (3Brain, Switzerland) pre-
viously coated with poly-D-lysine (0.1mg/ml) and laminin
(0.1 mg/ml) to promote the adhesion of neurons. About
6× 104 neurons were plated, completely covering an active
area of 6×6 mm2, yielding a density of the culture of about
1.7 × 103 neurons/mm2. Cultures were filled with 1 mL
culture medium at 30 min after plating and incubated at
37 ◦C in the presence of 5 % CO2. Half of the medium was
refreshed twice a week.

2.2 Electrophysiological signals

Electrophysiological activities of neurons were recorded
with the original culture medium once every other day since
6 DIV in 5 % CO2 at room temperature (24 ◦C). Before
recording, the culture was kept at room temperature for
10 min for stabilization and placed back to the incubator
immediately after the recording for future measurement.
The chip 4096E has a recording area of 5.12 × 5.12 mm2

covered by 64×64 electrodes. The area of each electrode is
21 × 21 μm2 with an inter-electrode separation of 81 μm.

The network activity was acquired at a sampling rate of
7.7 kHz for each electrode. Each recording data set includes
network activity of 5 min. But, the data sets containing
unstable activity patterns, long silent periods, or abnormal
activities with, e.g., strong noise, were excluded for further
processing. The qualified data sets for further processing
are listed in Table 1. Spontaneous activities can be observed
after about 2 weeks in vitro, comprising isolated spikes and
short bursts involving many neurons (electrodes), e.g., the
one shown in Fig. 1. The isolated spikes produced in neu-
rons are detected by the BrainWave software through the
Precise Timing Spike Detection with threshold values that
are 8 times of the standard deviation of spike-free signals.

2.3 Detection of bursts and activity peaks

The bursts are detected as follows. The spike rate R (t) at
each instance t is measured as an average over the time win-
dow of size λ centered at the time. For detected spike times
from each MEA recording, typically of a 5-minute duration,
the maximum of the spike rate Rmax is first determined. A
lower threshold Rlower ≡ εRmax is used to decide whether
the culture is in an active state as illustrated in Fig. 2a.
A reverberatory burst typically starts with a strong activity
peak for the initiation phase followed by varying activity
level or peaks in the reverberation phase as illustrated in



J Comput Neurosci (2017) 42:177–185 179

Table 1 List of experimental recordings

Culture DIV Reverberation Spreading Speed (mm/s)

A 12 No 93.15

25 Yes 140.9

B 13 No 30.78

25 Yes 75.33

C 33 Yes 200.9

40 Yes 179.8

68 No 554.9

D 26 No 145.0

33 Yes 458.5

40 Yes 480.3

68 No 517.6

E 24 Yes 77.76

38 Yes 435.0

41 No 398.5

F 12 Yes 116.6

39 Yes 403.4

54 No 448.7

Fig. 2a. A burst is registered starting at ts when the cul-
ture becomes active at ts and stays active until the spike rate
reaches an upper threshold of Rupper ≡ �Rmax. The regis-
tered burst ends at te when the culture becomes inactive at te
and stays inactive at least for a duration of τterm. The empir-
ical values for the parameters used in the burst detection of
both the experimental and simulated data are: λ = 0.02s,
ε = 0.04, � = 0.2, and τterm = 1.5s.

ca

b

d

e

Fig. 1 a Raster plot of detected spikes from the culture E at DIV 38
and b the corresponding time histogram of firing rate. c to e Firing-rate
histograms for different DIVs (as labeled) of the culture E

a b

Fig. 2 Illustrated parameters for the detection of a a burst and b a
spike rate peak (marked by the star) as described in the text. The verti-
cal axes are spike rate in units of their maximum Rmax of the recording
while the horizontal are time axes

The peaks or reverberations could also be identified using
the same method as described above with a different set of
empirical parameter values. However, here we use a simpler
definition that is time-symmetric: A peak is defined as a
significant maximum (height h > αRmax > Rlower) in the
firing rate of a continuous time interval where the rate is
above half of this maximum firing rate as marked in Fig. 2b.
Preceding this interval and following the previous peak, if
the firing rate of the culture stays above the lower threshold,
the minimum of firing rate is considered the starting time
of this peak. Otherwise, the starting time is registered as the
time when the rate crosses the lower threshold. The state
variables of the system representing the internal noise and
degree of depletion, which are only available in simulation
results, are determined at the start time of a peak to correlate
with the characteristics of the peak.

2.4 Activity propagation and predictability of spiking
electrodes

The propagation of the spiking activity in a burst can be
visually observed from the animated replay of sustaining
spikes (Supplementary Materials). To quantify the wave-
like propagation of the initial sweep of activity and the
subsequent distributed activation of neurons, we introduce a
simple linear-spread diffusive model that can be used to pre-
dict the electrode for the next spike using spikes that have
already been recorded. The probability for the next spike
occurring at time t to be on the electrode at r is given by

P (r) = 1

N

∑

{i|ti<t}
e−(t−ti )/τp

1

L2
i

e−|r−ri |2/L2
i (1)

where ti and ri are time and location of the previous spike i,
Li ≡ v (t − ti ) is the spreading influence range of the spike
i, τp is the decay time of the influence, N ≡ ∑

r P (r) is
the normalization factor, and v is the spreading speed of the
influence. We note that the probability (1) is conditional on
a spike occurring at time t , and should be multiplied with
the spike rate R (t) for predicting the occurrence of a spike
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at r. We define the predictability of spikes as the average of
P (r) over all spikes in a recording comparing to the uni-
form distribution, which tells us how well the location of a
spike can be predicted from previous spikes using the sim-
ple model (1). For each recording, we find the value of v that
maximizes the predictability relative to a surrogate with ran-
domized spike positions as shown in Fig. 3a and these values
are included in Table 1 for all recordings. With the optimal
value v, a spike is considered an evoked spike if its position
r satisfies P (r) > 2P0 where P0 = 1/Nelec ≈ 2.4×10−4 is
the average probability for the spike to occur at an electrode
out of the Nelec = 4096 electrodes for our MEA. The num-
ber ratio of evoked spikes to the total spikes within the rate
peaks of a burst are shown next to the corresponding peaks
in Fig. 3b.

2.5 Computer simulations

To gain insight into the dynamics of the reverberatory
bursts, we use a neuronal synaptic model similar to that
described by Volman et al. (2007). The model uses Morris–
Lecar (ML) (Morris and Lecar 1981) neurons connected
with Tsodyks–Markram (TM) (Tsodyks and Markram
1997) synapses. The dynamics of neurons are governed by
the ML equations,

C
dV

dt
= −Iion + G (Vr − V ) + Ibg, (2a)

dW

dt
= θ

W∞ − W

τW

(2b)

where

Iion = gCam∞ (V − VCa) + gKW (V − VK) + gL (V − VL)

(3)

is the current through the membrane ion channels,

τW =
(
cosh

V − V3

2V4

)−1

, (4a)

W∞ = 1

2

(
1 + tanh

V − V3

V4

)
, (4b)

m∞ = 1

2

(
1 + tanh

V − V1

V2

)
(4c)

are the voltage dependent dynamic parameters, and the
threshold Vth of membrane potential defines the spiking
events which result in synchronous releases of neural trans-
mitters at the efferent synapses. Additionally, a residual
calcium variable RCa driven by the spiking events,

d

dt
RCa = −βRn

Ca

kn
R + Rn

Ca
+ Ip + Sγ log

R0
Ca

RCa
, (5)

a
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c

Fig. 3 a Predictability as a function of presumed spreading speed for
culture C at 33 DIV. Inset is a similar plot from a simulation. b Time-
histogram of a typical reverberatory burst with identified activity peaks
color coded with corresponding center-of-activity trajectories in the
insets. The numbers next to the rate peaks show the fractions of the
evoked spikes out of all spikes in the activity peaks. c Time-histogram
for a simulated reverberatory burst. The fractions of evoked spikes are
similarly labeled for each activity peak

where the spike train is S = ∑
σ δ (t − tσ ) with tσ being the

time of the spike event σ , is used to determine the rate,

η = ηmax
Rm
Ca

km
a + Rm

Ca
, (6)

of synapse-dependent asynchronous releases of neural
transmitters (see below) following an independent Poisson
process at each efferent synapse. The neural transmitters
released by the spike-driven synchronous and calcium-
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dependent asynchronous events follow a four-state decaying
dynamics based on a modification of the TM model,

dX

dt
= Q

τs

+ Z

τr

− uXS − Xξ (7a)

dY

dt
= − Y

τd

+ uXS + Xξ (7b)

dZ

dt
= Y

τd

− Z

τr

− Z

τl

(7c)

dQ

dt
= Z

τl

− Q

τs

. (7d)

where ξ = ξ̄
∑

a δ (t − ta) summing over the asynchronous
release events a with a Poisson rate given by (6), to include a
super-inactive state Q. Multiplying by the synaptic weights,
the fractions of neural transmitters in the active state Y

(7b) determine the contribution of the afferent synapses to
the membrane conductance G of a post-synaptic neuron
through a linear sum

Gi =
∑

j

wjiYji (8)

over all pre-synaptic neurons j of the given post-synaptic
neuron i. Following Volman et al. (2007), the synaptic
weights w are randomly drawn from a truncated Gaussian
distribution with a width that is ±20 % of its mean w̄ for the
connected neurons.

We place the model neurons on a 2D geometrical network
with connection probability between two neurons decay-
ing exponentially with the distance between them. Most of
the model parameters used in our simulations follow the
values given in (Volman et al. 2007) and can be found in
Table 2. The time constants of TM dynamics, background
currents for ML neurons, and synaptic weights are adjusted
uniformly to reach simulated time-histograms that qualita-
tively reproduce the experimental results as seen in Fig. 3.

Table 2 Values of parameters used in simulations

Morris–Lecar model

VCa 100 mV V2 15 mV gL 0.5 mS

VK −70 mV V3 0 mV C 1 μF

VL −65 mV V4 30 mV θ 0.2 ms−1

Vr 0 mV gCa 1.1 mS Vth 10 mV

V1 −1 mV gK 2 mS

Tsodyks–Markram synaptic transmission

τd 10 ms τl 800 ms u 0.25

τr 250 ms τs 5000 ms ξ̄ 0.02

Residual calcium dynamics

β 0.005 μM
ms γ 0.033 ka 0.13 μM

kR 0.4 μM R0
Ca 2000 μM m 4

Ip 1.1 × 10−4 μM
ms ηmax 0.32 ms−1 n 2

The raster plots for the simulated burst and the experimen-
tally observed burst in Fig. 3 are shown in Fig. 4. For
current study, we focus on the reverberatory bursts with
distinct reverberation peaks or sub-bursts in the spike rate
histogram.

The same burst and peak detections for the experimen-
tal measurements are applied to the simulation results with
slightly different empirical parameters. Comparing to the
experiments, the full dynamics of the simulations is read-
ily available as numerical data and can be further analyzed
to clarify the physical mechanisms of the bursting behav-
ior. Beside recording the time and neuron of each spike for
the calculation of a time-histogram and keeping track of
activity propagation, we are interested in the information of
neuronal noise and the depletion of synaptic resources. The
former is represented by the average concentration of resid-
ual calcium that governs the asynchronous release while the
later is represented by the average fraction of inactive and
super inactive neural transmitters which deplete the avail-
able neural transmitters in a bursting cycle. Both of the
values are retained at the start time of each detected peak
in the spike-rate histogram and used to correlate with the
properties of each peak.

a

b

Fig. 4 a Raster plot of recorded spikes and corresponding spike-rate
histogram for the bursting event shown in Fig. 3b. b Raster plot of
simulated spikes and corresponding histogram for the bursting event
shown in Fig. 3c
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2.6 Implementations

We implemented the computational model in the C++ pro-
gramming language using the Common Simulation Tools
framework (Chen 2016a). The simulation codes and the
framework are available on the github (Chen 2016b). A
brief description of the structure of the code, the data file
of the simulated system, and animated propagations for a
simulated and an experimental burst are included in the Sup-
plementary Materials of the paper. The spike data from the
MEA recordings as well as the computer simulations were
processed with the Python3 programming language and
most of the data plots were produced using the Matplotlib
library module. A Jupyter Notebook containing the Python3
codes for data processing and plotting is also included in the
Supplementary Materials.

3 Results

After plating, spontaneous activities are observed in about a
week in vitro. Such activities become synchronized into net-
work bursts around 10 DIV and show reverberations after
15 DIV. The number of peaks per burst reaches a maximum
around 30 DIV as shown in Fig. 5 and falls back to one
without reverberation after 40 DIV. It has been observed that
the reverberatory bursts during the intermediate DIV can be
divided into two phases (Gandolfo et al. 2010): a propaga-
tion phase where the channels are activated sequentially and
diffusively and a reverberation phase where the firings of the
neurons are seemingly random and more decoupled. Such
division was confirmed with CAT observation. As evident
from streches of the CATs shown in the insets of Fig. 3b for
a reverberatory burst, the propagation is indeed more promi-
nent for the initiating peak of spike rate (blue trajectory) and

Fig. 5 Number of detected peaks in spike rate per burst as a function
of DIV of the cultures. The reverberation of the bursts is maximized
around 30 DIV

reduces to a lingering (green) trajectory soon after. How-
ever, as the network reverberates, the CAT gradually regains
its propagating sweeps until the end of the burst (magenta
trajectory).

The factors driving the spiking activity of a neuron dur-
ing a bursting event include the synaptic action spreading
from its presynaptic neurons and the spontaneous activation
driven by its own neuronal or synaptic noises. To identify
the dominating factor contributing to a spike, we use the
simple linear-spread diffusive model (1) parametrized with
a spreading speed, which can be determined by a maxi-
mum likelihood method for each recording as documented
in Table 1. While a more sophisticated propagation model
might produce a better match to the observed behavior, the
added complexity is not expected to change our conclusions
qualitatively. Using the propagation model (1), we clas-
sify spikes into evoked spikes and spontaneous spikes. We
then determine their ratio for all rate peaks of a burst. The
results of evoked-spike fractions plotted in Fig. 6a for 33
DIV recording of culture C show an increase in the fraction
of evoked spikes as the network reverberates. To charac-
terize how synchronous the spikes within an activity peak
are, we normalize each rate peak i with its spike count ni

and use the normalized height hi/ni to quantify the syn-
chrony. In Fig. 6b, the synchrony of the activity peaks is
plotted against the time of the peaks relative to the start of
the bursts. While the synchrony data is more disperse, we
can see an upward trend following the time course of the
bursts. This demonstrates a correlation between the activ-

a

b

c

d

Fig. 6 a Fraction of evoked spikes in detected activity peaks for rever-
beratory bursts of 33 DIV recording of culture C against the peak
times relative to the start of the bursts. b Peak synchrony defined
as the height of a peak over its spike count. The faint lines con-
nect activity peaks in a burst in sequence. c and d are corresponding
results for fraction of evoked spikes and synchrony, respectively, from
simulations
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ity spreading and synchrony of the spikes. The result may
not be a surprise considering the activity spreading through
synaptic action following presynaptic spikes is how neu-
rons can communicate and should help to orchestrate the
synchronous activity.

To further clarify the synaptic dynamics contributing to
the increasing dominance of the evoked spikes over spon-
taneous ones during a reverberatory burst, we turn to our
simulations that produce qualitatively similar, reverbera-
tory bursts with the increasing height of activity peaks in
the spike-rate, time histogram over the bursts as shown in
Fig. 3c. With a simulated system, the full set of dynamic
variables are available for analysis. We identify two factors
of relevance in determining the peak height or the syn-
chrony of the reverberation from our simulations: Firstly,
the residual calcium concentration controls the rate of asyn-
chronous release at synapses in the model and represents
the strength of an internal noise of the neurons. Secondly,
the inactive and super-inactive states featured in the model
take up the neural transmitters as they are activated and
represent the depletion of synaptic resources. We correlate
the system average of these two factors with the height
of activity peaks in a 3D scatter plot for all peaks of the

Fig. 7 a Scatter plot for correlation of height of activity peaks with the
system level of noise, represented by residual calcium concentration
([Ca2+]), and the depletion of synaptic resources, represented by the
super inactive state of neural transmitters. b Front view of the 3D plot.
c Top view of the 3D plot

Fig. 8 Average levels of residual calcium concentration (middle
curve), depleted neural transmitter (upper curve), and active neural
transmitter fractions (lower curve, 10-time magnified) of the system
over the course of the simulated burst of Fig. 3c. The shaded area
shows the time-histogram of the burst

simulated recording as shown in Fig. 7. From the projec-
tion Fig. 7b, we see that depletion, which increases during
a burst, correlates positively with an increase of the peak
height and thus the synchrony of the spikes. On the other
hand, the noise factor represented by residual calcium, as
shown in Fig. 7c, is initially pumped up by the spiking activ-
ity of a burst, reaching a maximum about half way through
the burst, and decreases afterward due to the lengthening
intervals between the reverberation peaks until the end of
the burst.

The detailed dynamics of different factors can be fur-
ther analyzed in a simulation. In Fig. 8, we plot the residual
calcium concentration, depleted neural transmitter fraction
(Z + Q), and the active neural transmitter fraction over the
very burst shown in Fig. 3c. Taken from the computational
model, the depletion of neural transmitters to the Z and Q

states is driven by the activated transmitters Y from the spik-
ing activity. The spiking activity also increases the level of
residual calcium, which controls the noisy, asynchronous
releases of the neural transmitters leading to the reverbera-
tion in a burst. Apart from making the role of synchronous
releases more important in the activation of neurons, the
depletion also leads to longer recovery time of neural trans-
mitters. Coupling with the rapid decay of calcium between
the reverberation peaks, this leads to the lowing in the mean
level of residual calcium towards the end of a burst.

4 Discussion

In the current study, we use a high-density MEA system
to investigate the physical mechanisms underlying the mor-
phological richness of reverberatory neural bursts. Our sim-
ple linear-spread diffusive model allows a classification of
the spikes as well as an inference of the propagation speed of
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synaptic activities. The change of the predictability of spikes
allows us to detect the change in the propagation behavior
during a burst as shown in Fig. 6. However, the traveling-
wave-like sweep of activity, especially for the initiation of
a burst, is not diffusive. A more sophisticated model will
be required if one would like to have a more faithful cap-
ture of such dynamics. Nonetheless, the method of inference
for the model parameters using individual spikes as demon-
strated remains applicable. The method is enabled by our
use of high-density MEA and does not resort to data reduc-
tion before inferring the propagation dynamics. That is,
each spike has a direct contribution to the resolution of the
spreading speed and the method can potentially be used to
resolve more complex dynamics of the system.

The finding from our analysis of the simulated sys-
tem suggests an interesting phenomena, which we call
depletion-enhanced synchronization, at play in the cultured
network with the reverberatory bursts. In such a burst, the
initiation activity is a fast sweeping wave of propagating
spikes across the network that is well synchronized. This
activity produces a significant amount of residual calcium,
promoting noisy asynchronous releases, and prompting the
spontaneous firing of the neurons that results in the subse-
quent reverberation of the burst. Initially, the spontaneous
spikes are more or less independent and the heterogeneity
in the neurons and their connectivity makes the spike-rate
peaks broad and less synchronous. However, as the neu-
ral and synaptic resources are increasingly depleted by the
continuing spiking activity of the burst, it becomes harder
for the neurons to fire independently and they thus increas-
ingly rely on the synchronous releases triggered by the
firing of their presynaptic neurons to help them cross the
firing threshold. Such mechanism accounts for the observed
increase of evoked spikes and the synchrony in Fig. 6 and
may be a general mode of operation for other complex
systems.

The synchronized network activities observed in our cul-
tures seem to be similar to the switching between Up and
Down states as observed in other neuronal network prepa-
rations (MacLean et al. 2005; Holcman and Tsodyks 2006;
Johnson and Buonomano 2007). However, since our mea-
surements are carried out onMEA, records of the membrane
potentials are not available to verify these states. It is known
that activities similar to what we reported here can also
be induced in acute slice (Czarnecki et al. 2012) when
inhibitory interactions are blocked. Presumably, there are
too many recurrent connections in our cultures which might
correspond to the pathological condition during epilepsy
(McCormick and Contreras 2001).

In the computational model, the active state is initially
stabilized by the residual calcium which promotes the asyn-
chronous releases intrinsic to the neurons, and later revital-
ized by the synaptic couplings of the network. The role of

calcium in the reverberation was implicated by Lau and Bi
(2005) and we chose to implement the model by Volman
et al. (2007) based the similarity between the firing-rate time
histograms it produces and those were seen in our experi-
ments. Alternatively, NMDA receptors have been proposed
to play a role in persisting a burst (Wang 1999, 2001). It will
be interesting to see in future studies what difference in the
bursting morphology will result from an NMDA receptor
based model.

Finally, we note that while synchrony is often associated
with coherence, it actually reduces the diversity in the pos-
sible dynamics of a system. In the reverberatory bursts that
we focused on, the synchrony results from the depletion of
synaptic resources and precedes the termination of the burst.
This parallels the recent findings in epilepsy that increas-
ing synchrony can be observed towards the end of seizures
(Lehnertz et al. 2009; Jiruska et al. 2013). Our results
may suggest a possible mechanism for such phenomena for
systems of similar episodic dynamics.
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