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Interface view of directed sandpile dynamics
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We present a directed unloading sand-box-type avalanche model, driven by slowly lowering the retaining
wall at the bottom of the slope. The avalanche propagation in the two-dimensional surface is related to the
space-time configurations in one-dimensional Kardar-Parisi-Zhang~KPZ! interface growth. We relate the scal-
ing exponents of the avalanche cluster distribution to those for the growing surface. The numerical results are
close but deviate significantly from the exact KPZ values. This might reflect stronger than usual corrections to
scaling or be more fundamental, due to correlations between subsequent space-time interface configurations.
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Avalanche phenomena are common in nature@1#. They
are characterized by fast relaxation dynamics under a s
driving force. Models that describe such dynamics, e.g.,
called sandpile models, have been studied extensively
more than a decade following the work of Baket al. @2#.
Directed sandpile models are a special subclass in w
relaxation follows a directional rule@3#, that is, the propaga
tion of active sites occurs only in one direction and ne
backfires. The central issue in this type of research
whether the dynamics is critical, such that the avalanche
tribution functions are scale invariant~with power-law de-
cay!, and if so, whether these scaling properties are unive
in the same sense as equilibrium critical phenomena.
understanding of these issues is still restricted. There
only a few exactly soluble models, e.g., some determini
Abelian directed sandpile models@3#, but most insight is still
limited to numerical simulation data. The evidence for sc
ing and universality in other types of nonequilibrium dyna
ics is less ambiguous: In surface growth~another example o
intrinsic critical behavior! several universality classes a
well established; e.g., Edwards-Wilkinson@4# and Kardar-
Parisi-Zhang~KPZ! @5# type surface growth; population an
catalysis type dynamics undergo absorbing-state-type p
transitions with distinct universality classes, such as direc
percolation and directed Ising@6–8#.

Efforts are under way to link avalanche dynamics to th
better understood processes. This ranges from mapping
driven interfaces@9–11# and directed percolation@12,13#, to
direct appeals to concepts, such as universality@14,15,10#
and renormalization@16,17#. Unfortunately the results re
main confusing. In this paper we introduce a tw
dimensional~2D! directed avalanche model with clear link
to KPZ-type surface growth in one lower dimension~1D!.
For the latter, the scaling exponents are exactly known
nontrivial, such that the core issues become more tran
cent.

The physical system we have in mind is a sand box w
a movable retaining wall to let out sand from the bottom
the slope, see Fig. 1. The retaining wall is lowered ve
slowly, such that grains tumble out sporadically forming d
tinct avalanches instead of a continuous flow. We model
sand surface by continuous height variablesh(x,y), with re-
spect to a 2D square lattice, which is rotated over 45°, me
ing that in the even~odd! y rows x takes only even~odd!
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integer values. The retaining wall is placed at they50
boundary. The slope is stabilized by the following constra
The surface particle in column (x,y) is supported by the two
columns (x61,y21) just below it, and must be lower tha
the lowest of the two increased by an constant amountsc,

h~x,y!<min@h~x11,y21!,h~x21,y21!#1sc . ~1!

The constantsc can be set equal to 1 without loss of gene
ality. An avalanche is triggered by selecting the highest s
(xi ,0) at they50 wall boundary~it is the i th avalanche! and
reducing its height by a random amount, 0,h i,sc . This
represents the lowering of the retaining wall. Next, all si
that violate the stability condition topple according to t
rule

h~x,y!→min@h~x11,y21!,h~x21,y21!#1h i~x,y!,
~2!

where 0,h i(x,y)<sc are uncorrelated random number
This toppling continues until the whole system is stab
again. Since the toppling of a site in rowy can only effect the
stability of two sites immediately above it in rowy11, the
sites can be updated row by row starting from they50
boundary.

This process is idealized compared to a real unload
sand box in the sense that the toppled grains drop out with

FIG. 1. Sand box with a slowly lowering retaining wall.
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disturbing the already stabilized lower regions of the surfa
It is possible to justify this as the low gravity or strong bo
limit where the falling sand does not gain enough moment
to disturb the stabilized surface on its way out. This is
nondissipative self-organized criticality~SOC! process. In
more conventional examples, the avalanche is triggered
the deposition of a particle, and the toppling rule conser
particles. In our model, the slope plays this role. Loweri
the retaining wall increases the slope at the bottom of
hill, and the avalanches conserve but propagate this cha
uphill.

The row-by-row toppling sequence~2! can be reinter-
preted as the dynamic rule for a 1D growing interface,
which they coordinate plays the role of time. Every stab
surface configuration represents a world sheet of the 1D
terface. Imagine creating an initial stable surface configu
tion, before the retaining wall starts to drop: choose an a
trary configuration with all 0,h(x,0)<sc in row y50.
Next, apply Eq.~2! to all sites in the next row,y51, to
create the next slice of the surface. Repeat this for all hig
rows. The configuration in every row is similar to a 1D i
terface evolving in timet5y. Figure 2 illustrates how this
interface propagates during each time step,y→y11. The
upper panel shows the first half of the update~the drawn to
the dashed line!. This is the deterministic part of the propa
gation~the min@# operator! in Eq. ~2!. The lower panel illus-
trates the second half of the update, where the heights
crease by a random amount 0,h<sc . The first step
removes material, and the second step deposits particle

This type of interface dynamics almost certainly belon
to the KPZ universality class. Equation~2! can be rewritten
as

h~x,t !5 1
2 @h~x11,t21!1h~x21,t21!#2 1

2 uh~x11,t21!

2h~x21,t21!u1h~x,t !, ~3!

which is a discrete version of the KPZ Langevin equation@5#

FIG. 2. KPZ-type growth dynamics.
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~¹h!21h. ~4!

To be absolutely sure, and also to make sure thatl is large
enough such that corrections to scaling from the EW po
~at l50) do not interfere, we checked numerically the b
havior of the surface widthD(L,t), defined asD2[^(h
2^h&)2&. Starting from a flat surface aty50, the width in-
creases asD;tb for 0!t!Lz and saturates atD;La for t
@Lz, with L the lattice size in thex direction. The numerical
results in Fig. 3 are consistent with the exactly known KP
valuesa5 1

2 , b5 1
3 , andz5a/b5 3

2 .
We will present all our numerical results as finite si

scaling~FSS! plots of effective exponents, e.g.,a(L) in Fig.
3~a!, obtained from applying the formD5ALa to two
nearby values ofL. It is more common to present log-lo
plots, such as, log(D) versus log(L), and extracta from a
least-squares-type straight line fitting. That leads to res
that appear statistically very accurate, but are systematic
off when significant FSS corrections to scaling~subdominant
power laws! are present@18#. Figure 3~a! is a good example
of this. The approach toL→` is consistent with a simple
leading corrections to scaling power law with exponenty5
2 1

2 .
The characteristic feature of the SOC is the lack of typi

avalanche length, width, depth, or mass scales. The prob
ity distributions follow power laws, asPw;w2tw character-
ized by the scaling exponents,t l ,tw ,td , and tm . Our nu-
merical simulation results confirm the existence of sc
invariance. The critical exponents converge well, see Fig
The length l is the maximumy coordinate the avalanch
reaches. The widthw is the maximum departure in thex
directionux2xi u from the trigger pointxi . The depthd is the
maximum height change,hi2hi 21, caused by the avalanche
and the mass is the total amount of sand carried off by
avalanche.

The metadistribution functionP( l ,w,d) should obey the
scaling form

P~ l ,w,d!5b2sP~b2zl ,b21w,b2ad!, ~5!

FIG. 3. Monte Carlo~MC! results for the global interface width
~a! finite sizeLx estimates for the saturated surface width expon
a; ~b! finite time estimates for the transient surface width expon
b from a flat initial configuration. The solid lines represent conve
tional MC simulations with an uncorrelated world sheet ensem
and the dashed line is data from avalanche correlated MC runs
9-2
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with b an arbitrary scale parameter. The exponentss, z, and
a, are expected to be robust with respect to details of
dynamic rule, and thus define the universality class. Sin
parameter distributions, such as,Pw;w2tw, follow by inte-
grating out the other two parameters. This implies the f
lowing expressions for thet exponents:

t l5
s212a

z
, tw5s2z2a, td5

s212z

a
, ~6!

or inverted

z5
tw21

t l21
, a5

tw21

td21
, s5tw1z1a. ~7!

Every stable slope configuration represents a poss
world sheet of a 1D KPZ-type interface, and every avalan
the difference between two such world sheets. Therefore,
natural to expect that the length~depth! of the avalanche
scales with the KPZ value forz(a). In Fig. 5 we replot the
numerical finite size scaling estimates of thet exponents in
terms of a, z, and s. The valuesz51.5260.02 anda
50.4660.01 are close to those of 1D KPZ growth, but
both cases the FSS curves overshoot the KPZ values
raise some serious doubts. The distribution of avalan
cluster sizes is the most commonly studied and experim
tally the most accessible property of SOC. Its exponen
linked toa andz in the following manner. At the start of th
avalanche, the height of a boundary site (y50) is lowered
on average by1

2 sc . Thus, for a sand box of widthLx the
boundary row is lowered by12 sc after Lx avalanches. In the
stationary state, the entire surface moves down on averag
1
2 sc and the average amount of removed sand is equa
Ly3 1

2 Lxsc . Thus, the average mass of an avalanche mus
equal to

FIG. 4. Finite size scaling estimates of the avalanche distr
tion exponents,t l , tw , td , andtm.
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scLy . ~8!

This is analogous to conservation of current in conventio
deposition-type avalanche systems~see, e.g.,@3#!. Assume
that the avalanche clusters are compact, i.e., the size
holes of unaffected regions inside an avalanche do not s
with the avalanche size. In that case, the mass scales am
; lwd, and we can use the metadistribution function
evaluate Eq.~8!, as

^m&;E
0

Ly
dlE

0

`

dwE
0

`

dd lwdP~ l ,w,d!

1mLy
E

Ly

`

dlE
0

`

dwE
0

`

ddP~ l ,w,d!. ~9!

This applies when the box is wide and deep enough thatLy is
the only limiting factor to the avalanches. The first term a
counts for all avalanches that fit inside the box, and the s
ond term for the ones that reach theLy edge and thus are
prematurely terminated. The first integral scales
Ly

(2s1212z12a)/z for large Ly , while the second one scale
as Ly

(2s111z1a)/z . We have assumedm; lwd so mLy

;Ly
(11z1a)/z . The two terms in Eq.~9! scale in the same

way, as

^m&;Ly
(2s1212z12a)/z . ~10!

Solving Eqs.~8! and ~10! for s gives

s521z12a. ~11!

This relation is numerically well satisfied. The direct me
surement yieldss54.4360.05, see Fig. 5, in mutual agree
ment with the numerical values fora andz.

- FIG. 5. Finite size scaling estimates fora, z, and s derived
from data in Fig. 4 using Eq.~7!.
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The intriguing issue we are left with is whether the slig
but systematic deviations of the exponents in Fig. 5 fr
their KPZ values (a5 1

2 , z5 3
2 , ands5 9

2 ) is for real or just
an artifact of much stronger FSS corrections than usual~the
avalanches cover only a small part of the surface!. Conven-
tional KPZ dynamics implies an ensemble average over
dependent Monte Carlo~MC! runs, i.e., over a large set o
independent world sheets. The avalanche dynamics perfo
this ensemble average in a correlated manner. All subseq
world sheets are identical except for the avalanche area.
might change the scaling exponents and prove to be a
feature in how surface growth dynamics relates to avalanc
type SOC in general. To check this directly, the dashed cu
in Fig. 3b shows the time evolution of the global KPZ su
face roughness using avalanche correlated MC runs. The
ponentb5a/z is again consistent with the above avalanc
scaling exponents and is systematically smaller than the K
valueb5 1

3 . Maybe the upswing in the FSS estimates at la
t indicates that the KPZ values are restored in the thermo
ed

e
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namic limit, but this is a long shot. This issue needs furth
study, in particular, from an analytic KPZ perspective. F
example, it is well known that~the somewhat analogous!
correlated noise changes the KPZ exponents.

Finally, the exponent relations Eq.~7! apply also to the
recent results of stochastic directed sandpile models by P
zuski and Bassler@19# and Klosteret al. @20# where the ava-
lanche dynamics is related to Edwards-Wilkinson@4# surface
growth, with z52 and a51/2; and also to the exactly
soluble directed sandpile model of Dhar and Ramaswa
which satisfies Eq.~7! with z52 anda50. Unfortunately,
these models do not resolve the KPZ exponents issue,
cause they are intrinsically simpler than ours, such that th
are no correlations between the stable configurations of
sandpile and thus neither among successive avalanches
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