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Interface view of directed sandpile dynamics
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We present a directed unloading sand-box-type avalanche model, driven by slowly lowering the retaining
wall at the bottom of the slope. The avalanche propagation in the two-dimensional surface is related to the
space-time configurations in one-dimensional Kardar-Parisi-Zki€Rg) interface growth. We relate the scal-
ing exponents of the avalanche cluster distribution to those for the growing surface. The numerical results are
close but deviate significantly from the exact KPZ values. This might reflect stronger than usual corrections to
scaling or be more fundamental, due to correlations between subsequent space-time interface configurations.
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Avalanche phenomena are common in nafiff They integer values. The retaining wall is placed at the 0O
are characterized by fast relaxation dynamics under a slolwoundary. The slope is stabilized by the following constraint.
driving force. Models that describe such dynamics, e.g., soThe surface particle in columrx(y) is supported by the two
called sandpile models, have been studied extensively fagolumns &=1y—1) just below it, and must be lower than
more than a decade following the work of Bakal. [2].  the lowest of the two increased by an constant amegint
Directed sandpile models are a special subclass in which .
relaxation follows a directional rulgg], that is, the propaga- h(x,y)=minfh(x+1y—1),h(x=1y—-1)]+sc. (1)

tion of active sites occurs only in one direction and never. h fank b ; 1o 1 without | f
backfires. The central issue in this type of research isT € constans, can beé set equal to L without 10Ss of gener-

whether the dynamics is critical, such that the avalanche dig/Ily: An avalanche is triggered by selecting the highest site
tribution functions are scale invariafith power-law de-  (Xi,:0) at they=0 wall boundary(it is theith avalanchpand

cay), and if so, whether these scaling properties are universa
in the same sense as equilibrium critical phenomena. ou;
understanding of these issues is still restricted. There ar
only a few exactly soluble models, e.g., some deterministid"'®

Abelian directed sandpile moddl3], but most insight is still ,

limited to numerical simulation data. The evidence for scal- C¢Y) M1y =1),h(x=1y=1)]+ ni(x,y),(z)
ing and universality in other types of nonequilibrium dynam-

ics is less ambiguous: In surface growémother example of \yhere 0<#,(x,y)<s. are uncorrelated random numbers.
intrinsic critical behavior several universality classes are This toppling continues until the whole system is stable
well established; e.g., Edwards-Wilkins¢a] and Kardar-  again. Since the toppling of a site in rguzan only effect the
Parisi-ZhangKPZ) [5] type surface growth; population and stapility of two sites immediately above it in roy+ 1, the
catalysis type dynamics undergo absorbing-state-type phagges can be updated row by row starting from e 0
transitions with distinct universality classes, such as directegoundary.

percolation and directed Isirl—8]. This process is idealized compared to a real unloading

Efforts are under way to link avalanche dynamics to thes&and box in the sense that the toppled grains drop out without
better understood processes. This ranges from mappings to

driven interface$9-11] and directed percolatiofi2,13, to
direct appeals to concepts, such as universli$,15,1Q
and renormalizatior{16,17. Unfortunately the results re-
main confusing. In this paper we introduce a two- 9
dimensional(2D) directed avalanche model with clear links 4
to KPZ-type surface growth in one lower dimensitiD). v
For the latter, the scaling exponents are exactly known but ,
nontrivial, such that the core issues become more translu-
cent.

The physical system we have in mind is a sand box with
a movable retaining wall to let out sand from the bottom of
the slope, see Fig. 1. The retaining wall is lowered very
slowly, such that grains tumble out sporadically forming dis-
tinct avalanches instead of a continuous flow. We model the
sand surface by continuous height varialiés,y), with re-
spect to a 2D square lattice, which is rotated over 45°, mean-
ing that in the ever{odd) y rows x takes only ever{odd) FIG. 1. Sand box with a slowly lowering retaining wall.

pducing its height by a random amount&l@;<s.. This
presents the lowering of the retaining wall. Next, all sites
at violate the stability condition topple according to the
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FIG. 3. Monte CarldMC) results for the global interface width:
(a) finite sizel, estimates for the saturated surface width exponent
«a; (b) finite time estimates for the transient surface width exponent
B from a flat initial configuration. The solid lines represent conven-
tional MC simulations with an uncorrelated world sheet ensemble,
and the dashed line is data from avalanche correlated MC runs.

FIG. 2. KPZ-type growth dynamics.

oh \
E:VZh—E(Vh)Z‘l‘ n. (4)
disturbing the already stabilized lower regions of the surface.

It is possible to justify this as the low gravity or strong bond

limit where the falling sand does not gain enough momenturd © P€ absolutely sure, and also to make sure ihét large

to disturb the stabilized surface on its way out. This is aenough such that corrections to scaling from the EW point

nondissipative self-organized criticalitfSOC process. In (@tA=0) do not interfere, we checked _numerlcagy the be-
more conventional examples, the avalanche is triggered bjavior of the surface widthA(L,t), defined asA: =((h
the deposition of a particle, and the toppling rule conserves (M))°)- Starnlr;g from a flat surface at=0, the width in-
particles. In our model, the slope plays this role. Lowering®'®¢as€s aa~t” for 0<t<L* and saturates ak~L“ for t

the retaining wall increases the slope at the bottom of the”L" With L the lattice size in the direction. The numerical
hill, and the avalanches conserve but propagate this changgSults in Fig. 3 are consistent with the exactly known KPZ
uphill. valuesa=3, B=3, andz=alB=73.

The row-by-row toppling sequenc@) can be reinter- We will present all our numerical results as finit(_a size
preted as the dynamic rule for a 1D growing interface, inSC&ING(FSS plots of effective exponents, e.gy(L) in Fig.
which they coordinate plays the role of time. Every stable 3(8), obtained from applying the form\=AL“ to two
surface configuration represents a world sheet of the 1D inP€arby values ot. It is more common to present log-log
terface. Imagine creating an initial stable surface configuraP!0ts, such as, log( versus logk), and extracta from a
tion, before the retaining wall starts to drop: choose an arbil€ast-squares-type straight line fitting. That leads to results
trary configuration with all &h(x,0)<s. in row y=0. that appear statistically very accurate, but are systematically
Next, apply Eq.(2) to all sites in the next rowy=1, to off when significant FSS corre_ctlons to _scall(mglbdomlnant
create the next slice of the surface. Repeat this for all highdPOWer laws are present18]. Figure 3a) is a good example
rows. The configuration in every row is similar to a 1D in- Of this. The approach ta —c is consistent with a simple
terface evolving in time=y. Figure 2 illustrates how this Ieeidmg corrections to scaling power law with expongst

interface propagates during each time stgp;y+1. The — 2: o ] _
upper panel shows the first half of the updétee drawn to The characteristic feature of the SOC is the lack of typical

the dashed line This is the deterministic part of the propa- @valanche length, width, depth, or mass scales. The probabil-
gation (the mir{] operatoy in Eq. (2). The lower panel illus- !ty distributions f_oIIow power laws, aB,,~w~ " character-
trates the second half of the update, where the heights iriz€d by the scaling exponents,, 7,75, and ry,. Our nu-
crease by a random amount<®;<s,. The first step _menc;al S|mulat|on _results confirm the existence of scale
removes material, and the second step deposits particles. nvariance. The critical exponents converge well, see Fig. 4.
This type of interface dynamics almost certainly belongs! he lengthl is the maximumy coordinate the avalanche

to the KPZ universality class. Equatié®) can be rewritten é@ches. The widthw is the maximum departure in the
as direction|x—x;| from the trigger poink; . The depths is the

maximum height changé; — h;_ 1, caused by the avalanche,
and the mass is the total amount of sand carried off by the
h(x,t)=3[h(x+1t—1)+h(x—1t—1)]—3|h(x+1t—1) avalanche.
The metadistribution functio®(l,w, ) should obey the
—h(x=1t- D)+ 7(x.0), @ scaling form (w.0) Y

which is a discrete version of the KPZ Langevin equafeh P(I,w,8)=b “P(b~2,b tw,b™%§), (5)
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FIG. 4. Finite size scaling estimates of the avalanche distribu-

) FIG. 5. Finite size scaling estimates faf, z, and ¢ derived
tion exponentsy,, 7, 75, and .

from data in Fig. 4 using Eq7).

with b an arbitrary scale parameter. The exponentg, and 1
a, are expected to be robust with respect to details of the (m)=J dmmRB,(m)= EscLy. )
dynamic rule, and thus define the universality class. Single

parameter distributions, such a&,~w™ "w, follow by inte-
grating out the other two parameters. This implies the fol
lowing expressions for the exponents:

This is analogous to conservation of current in conventional
“deposition-type avalanche systerfsee, e.g.[3]). Assume
that the avalanche clusters are compact, i.e., the sizes of
holes of unaffected regions inside an avalanche do not scale

oc-1l-«a o—-1-z with the avalanche size. In that case, the mass scales as
=T TwToTZma, TemT T 6) ~lwé, and we can use the metadistribution function to
evaluate Eq(8), as

or inverted L - "
<m>~f yo||f de dslwsP(1,w, 8)
0 0 0

Tw—1 Tw—1
Z= a=

T|_1’

=— 71 o=T1,t+Z+a. (7) " " "
4 +mLf dlf de doP(l,w,d). 9)
Iy, 0 0
Every stable slope configuration represents a possible
world sheet of a 1D KPZ-type interface, and every avalanchd his applies when the box is wide and deep enoughltpat
the difference between two such world sheets. Therefore, it ithe only limiting factor to the avalanches. The first term ac-
natural to expect that the lengtldepth of the avalanche counts for all avalanches that fit inside the box, and the sec-
scales with the KPZ value far(«). In Fig. 5 we replot the ond term for the ones that reach the edge and thus are
numerical finite size scaling estimates of thexponents in  prematurely terminated. The first integral scales as
terms of @, z and o. The valuesz=1.52+0.02 anda  L{ 7"%722729/ for Jarge L, while the second one scales
=0.46+0.01 are close to those of 1D KPZ growth, but inas L{"""'"**9/* We have assumedn~Iws so m
bqth cases the _FSS curves oversh_oot_ the_ KPZ values angl_§1+z+a)/z_ The two terms in Eq(9) scale in the same
raise some serious doubts. The distribution of avalancha,ay, as
cluster sizes is the most commonly studied and experimen-
tally the most accessible property of SOC. Its exponent is <m>~|_(fa+2+22+2a)/2_ (10)
linked to o andz in the following manner. At the start of the Y
avalanche, the height of a boundary site=(0) is lowered  Solving Egs.(8) and(10) for o gives
on average byss.. Thus, for a sand box of width, the
boundary row is lowered bys, after L, avalanches. In the oc=2+z+2a. (11
stationary state, the entire surface moves down on average by
3s. and the average amount of removed sand is equal t@his relation is numerically well satisfied. The direct mea-
Lyx%LXsc. Thus, the average mass of an avalanche must beurement yieldsr=4.43+0.05, see Fig. 5, in mutual agree-
equal to ment with the numerical values fer andz
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The intriguing issue we are left with is whether the slight namic limit, but this is a long shot. This issue needs further
but systematic deviations of the exponents in Fig. 5 fromstudy, in particular, from an analytic KPZ perspective. For
their KPZ values &=3, z=3, ando=3) is for real or just example, it is well known thatthe somewhat analogous
an artifact of much stronger FSS corrections than uéhal  correlated noise changes the KPZ exponents.
avalanches cover only a small part of the surfa@onven- Finally, the exponent relations E¢7) apply also to the
tional KPZ dynamics implies an ensemble average over inrecent results of stochastic directed sandpile models by Pac-
dependent Monte Carl@MC) runs, i.e., over a large set of zuski and Bassldr19] and Klosteret al.[20] where the ava-
independent world sheets. The avalanche dynamics perforntgnche dynamics is related to Edwards-Wilkingdhsurface
this ensemble average in a correlated manner. All subsequegtowth, with z=2 and a«=1/2; and also to the exactly
world sheets are identical except for the avalanche area. Thisluble directed sandpile model of Dhar and Ramaswamy,
might change the scaling exponents and prove to be a keyhich satisfies Eq(7) with z=2 anda=0. Unfortunately,
feature in how surface growth dynamics relates to avalanchehese models do not resolve the KPZ exponents issue, be-
type SOC in general. To check this directly, the dashed curveause they are intrinsically simpler than ours, such that there
in Fig. 3b shows the time evolution of the global KPZ sur- are no correlations between the stable configurations of the
face roughness using avalanche correlated MC runs. The exsandpile and thus neither among successive avalanches.
ponentB= a/z is again consistent with the above avalanche
scaling exponents and is systematically smaller than the KPZ
value 8= 1. Maybe the upswing in the FSS estimates at large This research was supported by the National Science
t indicates that the KPZ values are restored in the thermodyFoundation under Grant No. DMR-9985806.
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