
PHYSICAL REVIEW E 66, 011306 ~2002!
Directed avalanche processes with underlying interface dynamics

Chun-Chung Chen and Marcel den Nijs
Department of Physics, University of Washington, Seattle, Washington 98195

~Received 18 February 2002; published 24 July 2002!

We describe a directed avalanche model; a slowly unloading sandbox driven by lowering a retaining wall.
The directness of the dynamics allows us to interpret the stable sand surfaces as world sheets of fluctuating
interfaces in one lower dimension. In our specific case, the interface growth dynamics belongs to the Kardar-
Parisi-Zhang~KPZ! universality class. We formulate relations between the critical exponents of the various
avalanche distributions and those of the roughness of the growing interface. The nonlinear nature of the
underlying KPZ dynamics provides a nontrivial test of such generic exponent relations. The numerical values
of the avalanche exponents are close to the conventional KPZ values, but differ sufficiently to warrant a
detailed study of whether avalanche-correlated Monte Carlo sampling changes the scaling exponents of KPZ
interfaces. We demonstrate that the exponents remain unchanged, but that the traces left on the surface by
previous avalanches give rise to unusually strong finite-size corrections to scaling. This type of slow conver-
gence seems intrinsic to avalanche dynamics.

DOI: 10.1103/PhysRevE.66.011306 PACS number~s!: 45.70.Ht, 05.65.1b, 05.70.Np, 47.54.1r
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I. INTRODUCTION

Avalanche phenomena are common in nature. Exam
range from accumulating snow on mountain slopes, s
shearing between continental plates@1#, rerouting in river
networks, to creeping magnetic flux lines in super conduc
@2#. Following the work by Baket al. @3#, physicists aim to
capture the essential aspects of such dynamical systems
simple automaton processes, commonly referred to as s
pile models and self-organized criticality~SOC!. Impressive
successes have been achieved, such as reproducing p
law distributions in avalanche events similar to those
served in nature, and the start of a classification schem
such processes in terms of so-called universality classes@4#.
Unfortunately most of these are numerical in nature. Anal
cal exact results remain rare.

Directed avalanche phenomena form a subclass of th
SOC processes. Dhar and Ramaswamy introduced the
directed sandpile model and solved it exactly@5#. This was
possible because in their model the avalanche propagati
governed solely by its two edges, and those two follow
dependent random walk dynamics. Tadic´ and Dhar intro-
duced a directed model in which particles are allowed to p
up beyond the critical height, by replacing the automato
deterministic toppling rule by a stochastic one@6#. The den-
sity of critical sites tunes itself and at distances far from
driving edge the propagation of active sites approaches
directed percolation@7# threshold. The scaling properties o
the avalanche distributions are thus linked to the critical
ponents characterizing the DP universality class. Another
ample of a stochastic directed avalanche process is the m
introduced and studied numerically by Pastor-Satorras
Vespignani@8#. Similar as in the above model by Dhar an
Ramaswamy, the stable landscape configurations~between
avalanche events! lack internal correlations in the stationa
state. This allowed Paczuski and Bassler@9# and also Kloster
et al. @10# to link this dynamic process to so-called Edward
Wilkinson @11# ~EW! interface growth and to derive the ex
act scaling exponents of the avalanche distributions.
1063-651X/2002/66~1!/011306~12!/$20.00 66 0113
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This novel world-sheet-type connection between a
lanche dynamics and interface growth is particularly pro
ising, because interface dynamic processes such as EW
Kardar-Parisi-Zhang@12# ~KPZ! growth are very well under-
stood, in particular, in 111 dimensions (111D) where the
scaling properties are known exactly. However, the ab
models that are linked to EW-type growth are rather po
examples, because EW growth is described by a simple
ear stochastic~diffusion-type! Langevin equation; correla
tions factorize, and important caveats in the relation to a
lanche dynamics can be obscured by this simplicity.

We set out to generalize this approach to nonlinear in
face dynamic processes, and recently introduced a dire
unloading sandbox model@13# in which the two-dimensiona
~2D! avalanche dynamics relates to 111D KPZ-type inter-
face growth. We derived exponent relations between the a
lanche and interface growth scaling properties, which
generic, and valid beyond our specific model. Our numer
results for the avalanche distributions~for length, width,
depth, and mass! follow indeed these exponent relation
Moreover, the avalanche critical exponents obey the p
dicted KPZ values within a few percent, an accuracy typi
to avalanche simulations. However, our numerical accur
is better than that; mostly because of a careful finite-s
scaling ~FSS! analysis. The exponents seem to converge
values that are slightly different from the KPZ values.

This left us with a puzzle. What is the origin of thes
small deviations? Is this a fundamental effect; or do the
ponents ultimately converge to the KPZ values, but with u
usually large corrections to scaling. In this paper we addr
these issues. We also provide a more detailed discussio
these world-sheet-type relationships between avalanche
interface growth dynamics. Our first paper was short and
not include many of the details that are crucial for the ana
sis presented here.

The fundamental difference between conventional K
interface growth and avalanche dynamics arises from the
eraging process over KPZ-type space-time world sheets
normal Monte Carlo~MC! simulations of interface growth
©2002 The American Physical Society06-1
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the distribution functions are determined in terms of e
semble averages over a set of totally uncorrelated space-
MC runs. In contrast, the avalanche dynamics gives rise
KPZ world sheets that are strongly correlated. Two sub
quent MC runs are identical except inside a single avalan
area. This difference in averaging, uncorrelated ver
avalanche-correlated MC runs, therefore emerges as a
issue for understanding the scaling properties of avalan
dynamics. This issue did not arise in the earlier EW-ty
avalanche models due to the linear nature of the EW proc
However, for nonlinear dynamics, such as KPZ, avalanc
correlated-type sampling could well lead to novel interfa
scaling exponents.

Speaking against a shift in the values of the expone
are arguments that: the KPZ stationary state, i.e., the s
surface profile far way from the driving edge, cannot be
fected by the avalanche-correlated-type averaging, bec
large avalanches that span the entire width of the box oc
periodically. These completely refresh the surface far aw
from the driving edge regularly, and thus wipe out all cor
lations between MC runs. This suggests that we are o
dealing with much larger than usual corrections to scali
The details are more complex than this simple argument,
we will establish that indeed the exponent values do
change.

The paper is organized as follows. In the following se
tion, we present the unloading sandbox model. In Sec.
we comment on how directed avalanche dynamics can
linked to interface growth in one lower dimension. Next,
Sec. IV, we show that in the interface growth interpretat
our specific model belongs to the KPZ universality class.
Sec. V, we derive the generic exponent relations betw
interface growth and directed avalanche dynamics, and
Sec. VI we test this numerically for our specific model.

In the second half of this paper we address the sm
deviations in the numerical values of the exponents fr
those of conventional KPZ growth. In Sec. VII, we prese
numerical results detailing how the traces left on the surf
profile by previous avalanches influence both the avalan
exponents and the interface growth ones. These scars in
rough surface enhance the surface roughness. We cas
enhanced interface roughness in terms of corrections to s
ing, and determine what value the critical dimension of
corresponding irrelevant operatorOsc ~in the sense of renor
malization theory! should have. Next, in Sec. VIII, we iden
tify the geometric meaning ofOsc, starting with a study of
the one-dimensional version of our model where a sim
phenomenon takes place. In 1D the interface growth proc
is a simple random walk, and the avalanche-correlated s
pling relates to the scaling properties of merging rand
walkers. Osc represents the distribution of avalanche e
points in the 1D surface, and can be studied directly from
rounding of the surface profile near the driving edge. In S
IX, we return to the full 2D case. The scars of previo
avalanches form lines on the surface. We identifyOsc with
the angle these lines make with respect to the direction
pendicular to the driving edge, and confirm with an analy
argument that the critical dimension ofOsc is equal toxsc
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52z with z the KPZ dynamic exponent. Finally, we sum
marize our results in Sec. X.

II. AN UNLOADING SANDBOX

Imagine a box filled with granular material, as illustrate
in Fig. 1. One of its four retaining walls is slowly lowered
such that the sand spills out from that side, and thus slo
unloads the box and establishes a sloped surface. In the
sistatic limit, the wall moves slow enough that the unloadi
events can be described as distinct avalanches. The box
be three dimensional, leading to 2D avalanche dynamics
2D surface, or can be 2D~like in a very narrow box! giving
rise to 1D avalanches on a 1D surface.

Inspired by this we consider a so-called solid-on-so
model defined on a 2D lattice. Height variablesh(r ) are
defined on a square lattice. We will consider two versions
the model. In the continuous height version, the heights
real numbers. In the discrete model, the heights are inte
h(r )50,61,62, . . . . Theformer corresponds to a continu
ous material without internal structure, but strong cohes
up to a specific length scalesc , while the latter correspond
to layered material where the surface height is quantized

The 2D lattice is rotated diagonally such that the prop
gation direction of the avalanche is along the diagonal dir
tion denoted byy. This is the direction in which the ava
lanche will run. Throughout this paper the coordina
perpendicular toy will be denoted byx. Figure 2 illustrates
this geometry.

The configurations are subject to the following stabil
condition. The column of particles on siter5(x,y) is sup-
ported by the two columnsr l5(x21,y21) and r r5(x
11,y21) directly below it and is stable when its height
less than the minimum of the heights at these two suppor
sites increased by a fixed amount:

h~r !<min@h~r l !,h~r r !#1sc , ~1!

wheresc is a constant. In the version of our model where t
heights are continuous variables,sc represents the only

FIG. 1. Sandbox with a slowly lowering retaining wall.
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DIRECTED AVALANCHE PROCESSES WITH . . . PHYSICAL REVIEW E66, 011306 ~2002!
length scale in theh direction and can be set equal to
without the loss of generality. Throughout this paper we w
also setsc51 in the discreteh model.

Consider a stable configuration, aftert̃ 21 avalanches.
The t̃ th avalanche is triggered at the highest siter5(x t̃ ,0),
on the y50 driving boundary~or, in the discrete heigh
model, by randomly choosing one of the highest sites! and
reducing its height by a random amount 0,h t̃<sc . This
likely creates unstable sites in the nexty51 row. Those are
updated by replacing their height by an amount equal to
lowest of the two supporting columns in the previous ro
and then adding an uncorrelated random amount 0<h(r )
<sc with uniform distribution, as

h~r !→min@h~r l !,h~r r !#1h~r !. ~2!

This updating continues row by row until all the sites a
stable again. Only after that the next avalanche is star
The toppling of a site only affects the stability of the tw
sites immediately above it in the nexty row. Therefore, we
can update the system row by row in increasing order ofy.

Direct experimental realizations of this unloading san
box model are not our immediate concern~the focus is on
establishing a generic theoretical relationship between a
lanche dynamics and interface growth!, but we expect that
this model is applicable to actual experimental unload
sandboxes. One of the most important issues in this con
is the row-by-row nature of the toppling rule. This is a cr
cial feature for our purposes, allowing the identification w
KPZ interface growth~in the following section!. In real un-
loading sandboxes the sand removed from rowy rolls down
hill and likely disturbs the already stabilized lower surfa
levels. Experimental realizations can avoid this from happ
ing, e.g., by choosing very light grains~compared to the
cohesion forces!. Note that our dynamic rule does not allo
the buildup of any pockets~deeper thansc) on the surface
that might trap such downward rolling grains.

Conservation laws are crucial to avalanche dynamics.
like most avalanche processes, our model does not cons
mass while the avalanche propagates. That might raise
specter of our model not being~self-organized! critical. The
connection to KPZ growth~an intrinsic critical process! dis-
pels this phantom. Moreover, the global slope of the surf
is preserved during each avalanche run, and conservatio
steps in the profile plays the role analogous to conserva
of mass.

FIG. 2. Lattice structure of sandbox model in 2D.
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In a typical SOC process, the quasistatic limit must
taken such that the surface regains full stability before a n
grain is being removed at the driving edge. Since avalanc
of all sizes appear, this means that the velocity of the low
ing wall should be inversely proportional to the siz
Lx3Ly of the box. Our process, however, is Markovian, i.
row by row in they direction. Removal of particles in rowy
does not affect the stability of the lower levels. In that ca
the lowering velocity needs only to be inversely proportion
to Lx .

The analysis of the dynamics involves distribution fun
tions of various characteristic features of the avalanches.
common examples are: length, width, depth, and mass.
avalanche lengthl will be defined throughout this paper a
the maximum distancey the avalanche travels from the driv
ing edge; the widthw as the maximum departure of thex
coordinate~perpendicular to the propagation direction! from
the trigger pointx coordinate; the depthd as the maximum
height change the avalanche creates at any of the affe
sites; and the massm as the total amount of material re
moved by the avalanche. All the above are dimensionl
quantities measuring the numbers of lattice spacings~or mul-
tiples ofsc in theh direction! in our numerical presentations

III. AVALANCHES VERSUS EPITAXIAL INTERFACE
GROWTH

The focus of this paper is on how the above avalan
dynamics relates to interface growth in one lower dimensi
Each stable sloped surface configuration of a directed sa
pile can be reinterpreted as a world sheet~space-time con-
figuration! of an interface in one lower spatial dimensio
The direction in which the avalanches propagate plays
role of time and the perpendicular coordinates the role
space. Our 2D unloading sandbox is equivalent to a
growing interface. Such an interpretation makes sense o
when the stability condition and the avalanche dynamic r
is directional and local in space time, such that causality
not violated in the interface growth interpretation. The s
bility condition ~1! and toppling rule~2! of our model are
row by row in nature and therefore indeed Markovian in th
sense.

Every stable configuration of the sandpile represent
possible interface growth lifeline~space-time-evolution in-
terface world sheet!. The conventional procedure for dete
mining the scaling properties of growing interfaces is to a
erage over a large set of completely independent MC ru
This would mean, in sandbox language, an ensemble ave
over completely refreshed surfaces, each totally uncorrela
from the previous one~except typically for the initial condi-
tion in row y50). The toppling rule~2! is applied to all sites
in every row, and repeated row by row, instead of only t
unstable sites created by toppling only the highest site in
initial row.

In avalanche dynamics, however, two subsequent grow
interface lifelines in this ensemble differ only inside the av
lanche area. From the interface growth perspective this
resents a rather peculiar and dangerous correlated-type
run averaging procedure. The MC runs of KPZ space-ti
6-3
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CHUN-CHUNG CHEN AND MARCEL den NIJS PHYSICAL REVIEW E66, 011306 ~2002!
configuration are strongly correlated, and this raises the s
ter of a change in the interface roughness scaling proper
The numerical evidence, presented below is sufficiently a
biguous that this issue will preoccupy us in the second h
of this paper.

IV. KPZ GROWTH

In this section, we demonstrate that the interface gro
model conjugate to the unloading 2D sandbox belongs to
111D KPZ universality class. The time evolution of th
interface is governed by the the toppling rule of the sa
model withy in Eq. ~2! representing timet,

h~x,t11!5min@h~x11,t !,h~x21,t !#1h~x,t !. ~3!

In the conventional global-type interface evolution~i.e., to-
tally refreshing nonavalanche-type uncorrelated MC ru!
every site in rowt11 is updated according to this rule.

Figure 3 illustrates the interface dynamics for one tim
step,t→t11. Conceptually, the time step can be split in
two parts; the deterministic min@# operator part and the sto
chastic random depositionh part.

Note that because of the diagonal orientation of the squ
lattice ~see Fig. 2!, the lattice sites are not ‘‘stationary i
time.’’ The conceptually easiest interpretation to resolve t
flip-flopping is to first double the number of lattice sites a
then require them to be paired alternately with their right
left neighbors at even and odd times; at even times sitesn
and 2n11 are fused to be at equal heights and at odd tim
the 2n21 and 2n sites.

The upper panel shows the deterministic first half of
update~from the drawn to the dash line!. The partners switch
and the min@ # operation equalizes their heights by choosi
the lowest of the two, so this step always removes mate

This can be interpreted also in terms of a movement of
steps in the interface. All up steps move to the right and
down steps to the left; while up and down steps merge w
they meet at one site.

The lower panel illustrates the second half of the upda
The height of each fused pair increases by a random am
0<h<sc .

Deposition-type interface dynamics like this typically b
longs to the KPZ universality class@12#. Indeed, Eq.~3! can
be rewritten as

h~x,t11!5 1
2 @h~x11,t !1h~x21,t !#

2 1
2 uh~x11,t !1h~x21,t !u1h~x,t !, ~4!

and from this it can be easily identified to be a discrete fo
of the KPZ Langevin equation,

]h

]t
5¹2h2

l

2
~“h!21h. ~5!

The crucial point is that the coefficient of the nonline
terml is clearly present. There is no hidden special symm
try of some kind that makes it vanish by accident. Atl50,
the KPZ equation would reduce to EW growth.
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To confirm the KPZ nature and make sure that thel is
large enough that corrections to scaling from the EW po
(l50) are not obscuring the KPZ scaling, we perform M
simulations on the interface dynamics as illustrated in Fig
The MC runs are completely independent.

We measure the time evolution of the interface widthW
defined as

W2~Lx ,t ![^~h2h̄!2& ~6!

with over bars~angle brackets! indicating average overx
~ensemble!. Starting from, e.g., a flat initial condition i
should scale as

W;tb ~7!

at intermediate times 0!t!Lx
z , and saturate at

W;Lx
a ~8!

for t@Lx
z ; with Lx the length of the 1D interface. The expo

nents for the KPZ universality class in 111D are known
exactly witha51/2, b51/3, andz[a/b53/2.

The numerical results are shown in Fig. 4. The values
a(Lx) are obtained from the saturated interface widths
imposing the scaling form~8! at adjacent values of the sys
tem sizeLx . Similarly, the values ofb(t) are obtained from
the transient interface widths by imposing the scaling fo
~7! at nearby timest. We like to remind the reader that simp
log-log plots of W versusLx and t look typically impres-
sively straight, but are notoriously inaccurate. The constr
tion of effective exponents, in the above manner might
first glance look less impressive~the data appears noisier!,
but this brings the analysis to a higher level where the le
ing corrections to finite-size and finite-time scaling beco
visible.

FIG. 3. The interface growth dynamics described by Eq.~3!
with upper panel showing movement of steps~from the drawn to
dashed line! and lower panel random depositions~shaded area! to
the interface.
6-4
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DIRECTED AVALANCHE PROCESSES WITH . . . PHYSICAL REVIEW E66, 011306 ~2002!
The approach toLx→` in Fig. 4 is consistent with the
leading correction to scaling exponentyir521/2 expected
from the EW term¹2h in Eq. ~5!. The corrections to FSS ar
stronger when the height variables are discrete than w
they are continuous. This is consistent with the sma
growth rate in the discrete height interface, and the fact
the growth rate is typically proportional to the nonlinear te
l. On average, more material is removed during the fi
deterministic part of the update process when the sur
heights are discrete.

V. SCALING PROPERTIES OF 2D AVALANCHES

In this section, we derive the exact relations between
scaling properties of the avalanches and 111D KPZ inter-
face growth. However, in the latter the world sheets
sampled in the correlated manner as outlined in Sec. III.

The characteristic feature of SOC is the lack of typic
avalanche length, width, depth or mass scales. The prob
ity distributions follow power laws. For example, the dist
bution of avalanche widths scales as

Pw;w2tw ~9!

with scaling exponenttw . Similarly, the avalanche length
depth, and mass distributions scale as power laws with
ponentst l , td , andtm . We can summarize this in a meta
distribution function P( l ,w,d); the probability to find an
avalanche of a specific widthw, lengthl, and depthd obeys
the scaling relation

P~ l ,w,d!5b2sP~b2zl ,b21w,b2ad! ~10!

with b an arbitrary scale parameter. The exponentss, z, and
a are expected to be robust with respect to details of
dynamic rule, and thus are characteristic of the universa
class to which this avalanche dynamics belongs. Single
rameter distributions, such asPw , follow by integrating out
the other variables. This implies the following expressio
for the t exponents:

t l5
s212a

z
, tw5s2z2a, td5

s212z

a
, ~11!

or inverted

z5
tw21

t l21
, a5

tw21

td21
, s5tw1z1a. ~12!

Let us presume that the avalanches are compact, i.e.,
the inside and the boundaries of an avalanche are well
fined and distinguishable~unlike in certain fractal struc-
tures!, and that the sizes of the holes~unaffected regions!
inside the avalanche do not scale with the avalanche s
This can be checked visually from typical simulation co
figurations, and both assumptions are indeed satisfied in
dynamics at least qualitatively. In that case, the mass of
avalanche must scale asm; lwd, such that the critical expo
nent of the distribution of avalanche massesPm;m2tm

obeys the identity
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There is one more relation between these critical ex
nents~leaving only two independent ones!. The avalanche is
initiated by lowering the bar at the driving edge of the bo
In the stationary state the average surface profile is invari
and therefore it shifts down at the same rate as the lowe
bar. Thus, we know how much mass drops out of the box
an average.

To be more precise, during each avalanche event,
height of only one single boundary site aty50 is lowered
by, on average, an amountsc/2. For a sandbox of widthLx
the boundary row is lowered bysc/2 afterLx avalanches. In
the stationary state, the entire surface matches this lowe
speed, such that the amount of removed sand is on an a
age equal toLxLysc/2. Therefore, the average mass of ea
avalanche must be equal to

^m&5 1
2 scLy . ~14!

The scaling properties of the mass distribution function
into this because

^m&5E m8Pm~m8!dm8, ~15!

which can be evaluated using the metadistribution funct
as

^m&;E
0

Ly
dlE

0

`

dwE
0

`

dd lwdP~ l ,w,d!

1mLy
E

Ly

`

dlE
0

`

dwE
0

`

ddP~ l ,w,d!. ~16!

This equation incorporates finite-size effects. The box is p
sumed to be wide and deep enough, such that the lengtLy
of the box~in the direction perpendicular to the driving edg!
is the only limiting finite-size factor. The first term in th
above equation accounts for all avalanches that fit inside
box and the second term for the ones that reach theLy edge,
and thus are prematurely terminated. The first integ

FIG. 4. MC results for the global interface width: left, finite-siz
(Lx , in the unit of lattice spacing! estimates for the saturated su
face width exponenta; right, finite-time (t, in MC time steps! es-
timates for the transient interface width exponentb from a flat
initial configuration. The solid~dashed! curves are for continuous
~discrete! height model.
6-5
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CHUN-CHUNG CHEN AND MARCEL den NIJS PHYSICAL REVIEW E66, 011306 ~2002!
scales asLy
(2s1212z12a)/z for large Ly . The second

term scales with the same power because the second int
scales asLy

(2s111z1a)/z , while the mass factor in front of i
scales asm; lwd;Ly

(11z1a)/z . The result

^m&;Ly
(2s1212z12a)/z , ~17!

when compared to Eq.~14!, yields the exponent identity

s521z12a. ~18!

The validity of these exponent identities goes well beyo
our KPZ-type unloading sandbox. For example, the EW-ty
directed avalanche models by Paczuski and Bassler@9# and
Klosteret al. @10# obey our Eq.~11! when we substitute forz
anda the EW values (z52, a51/2). The scaling exponent
of the original Dhar-Ramaswamy model can be described
the same equations withz52, a50 as well.

VI. NUMERICAL RESULTS FOR
2D SANDBOX AVALANCHES

The discussion of the preceding section leaves us w
two independent avalanche critical exponents,a andz. The
notation anticipates their identification with the scaling pro
erties of a rough interface in interface growth. There,a is the
scaling exponent of the interface width andz the dynamic
critical exponent. Indeed, the interface width relates to
depth of the avalanche, and time to the length of the a
lanche. We expect therefore thata andz take same values a
in 111D KPZ growth,a1z52 anda51/2.

We perform MC simulations on the sandbox avalanc
model and measure the avalanche metadistribution func
P( l ,w,duLy) @see Eq.~10!#. The sandbox is always take
wide and deep enough such that the box lengthLy acts as the
only FSS-type limiting factor. We average over 231 ava-

FIG. 5. FSS plots for thet exponents of 2D sandbox model. Th
solid ~dashed! lines are for continuous~discrete! height model.
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lanches. The reduced distributions, such asPl; l 2t l, follow
from the metadistribution from, e.g., summation overw
andd.

Figure 5 shows FSS approximates for thet exponents.
They are constructed as follows. Power-law-decaying obje
such asPl; l 2t l are almost always subject to crossove
scaling-type effects, i.e., subdominant additional power-l
terms. In the language of renormalization theory they ori
nate from so-called irrelevant scaling fields and also fr
nonlinear scaling field effects. This is well documented
equilibrium critical phenomena, but most recent nonequil
rium scaling studies ignore this systematic effect, e.g.,
simply making a log-log plot ofPl as function of l and
drawing a least-square-fitting-type straight line through
data. Such results show very little statistical noise, but
give rise to significant systematic errors. An example of
importance of corrections to scaling, was the large sprea
reported values of the stationary state roughness exponea
between various 2D KPZ-type-growth lattice models, whi
was resolved using a similar FSS analysis as presented
@14#.

In the limit of large l the subdominant additional powe
law terms fade away. So, more weight must be put on
large l part of the data than on the shortl section. However,
it is a balancing act, because at largel the results become
noisier, since few avalanches reach that far.

The total number of avalanches that reach beyondy scales
as

Ql~y!5E
y

`

Pl~ l !dl.
A

t l
y2t l11, ~19!

if the fraction of avalanches of lengthy scales asPl

FIG. 6. Effective scaling exponents derived from stationary a
lanche distributions of sandbox systems. The solid~dashed! lines
are for continuous~discrete! height model.
6-6
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DIRECTED AVALANCHE PROCESSES WITH . . . PHYSICAL REVIEW E66, 011306 ~2002!
.Ay2tl ~these are only the leading terms!. We construct ay
dependent approximate for the exponentt l from the ratio of
these two quantities, as

t l~y!5
lPl~y!

Ql~y!
. ~20!

The results are shown in Fig. 5.~We do the same for the
other distributions.! Plots such as this are intrinsically noisi
than conventional simple log-log type of plots of the dist
butions, but they contain much more information. The var
tion with y reflects the leading corrections to scaling. T
statistical noise at largey could be suppressed by running th
MC simulation longer. The simulation time is the only lim
iting factor. We used 231 avalanches and in that case,Ly
5512 is the optimal box size.

In Fig. 6, we replot the same data in terms ofa, z, ands,
following Eq. ~12! and using the same type of FSS analys
From the trend of the curves, we conclude thata50.46
60.01,z51.5260.02,s54.4360.05, andtm51.4860.01.
This means that the exponent relations~13! and ~18! are
satisfied well within the statistical noise limitations, i.e
within a few percent.

Surprisingly, the actual values forz anda, although close,
differ significantly from the exactly known 111D KPZ val-
uesa51/2 andz53/2. They deviate more than warrante
from statistical noise alone, and do not converge smooth
the KPZ values are correct. The approximates fora actually
undershoot the KPZ valuea51/2, and those forz overshoot
z53/2. This systematic effect needs to be explained. It co
be that the exponents differ in a fundamental manner fr
the conventional KPZ values, or that we are looking at u
usually large and slow corrections to FSS. The smallnes
the deviations makes the latter more likely~except when this
happens to be a continuously varying exponents scenari!.

FIG. 7. Effective scaling exponents derived from the distrib
tions of first avalanches on fresh sandbox surface for the continu
height model.
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We will blame the correlated MC averaging feature f
this, but it should be noted that avalanche distributions
intrinsically more sensitive to FSS effects than global int
face features. Many avalanches in the ensemble are s
compared to the global box size, and therefore sample
average the KPZ scaling properties over much sma
lengths and shorter time scales than in a conventional glo
interface roughness analysis at a comparable space-time
size.

One option is to push the run button on the computer a
out perform all corrections to FSS. Unfortunately, it wou
require extremely long MC times to create large numbers
such large avalanches. It is doubtful that we would be abl
get far enough in a reasonable time span. Moreover this
proach is intellectually unappealing. We prefer to search
the origin of the deviations in the exponents.

VII. AVALANCHE-CORRELATED MC RUNS

The basic premise of our exponent identities is that a
lanches are like any other fluctuation on a 111D KPZ-type
world sheet. Initially flat KPZ interfaces~the sand surface
next to the driving edge! roughen in time~moving away
from the driving edge! in such a manner that at~KPZ! time y
the stationary state roughness is established within a le
scalel x;y1/z. This defines a so-called spreading cone. T
avalanches are expected to follow the same pattern. H
ever, the avalanche cone seems to spread slightly fa
since the above avalanche value forz slightly exceeds the
conventional KPZ value, and inside the avalanche the
face seems to be slightly less rough, since the avalan
value fora is slightly smaller.

In this and the following section we will establish that th
is caused by correlations with previous avalanches. The
avalanche does not run its course on a pristine fresh K

-
us

FIG. 8. Upper panel: The interface width~squared! for sandbox
surface~solid lines! and the same for an ensemble of fresh surfa
~dashed lines!; Lower panel: The difference between the two, wi
Lx58, 16, 32, 64, 128, and̀ ~from bottom up! the box size in the
direction parallel to the driving edge.
6-7
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CHUN-CHUNG CHEN AND MARCEL den NIJS PHYSICAL REVIEW E66, 011306 ~2002!
interface world sheet but on an aged one scarred by prev
avalanches.

There are two obvious tests to address the effects of th
scars. The first one is to determine the avalanche distr
tions for only the first avalanche on a fresh KPZ world sh
~the initial condition!, i.e., to refresh the entire surface com
pletely after each avalanche. The results are shown in Fig
The first avalanches likely follow normal KPZ exponentsz
converges now smoothly towardsz53/2; while the FSS ap-
proximates fora, although still too small, start to turn to
wardsa51/2 and do not cross that value anymore. It sho
be noted that the FSS corrections are expected to be la
and that the data is noisier than in Fig. 6, because altho
we ran the same number of avalanches (231), the fraction of
large avalanches is smaller, leading to smaller and noi
amplitudes in the power-law tails of the distributions.

The second test of the role of the scars is to measure
global interface roughness for avalanche-type correlated
runs instead of completely refreshing MC runs. The up
panel of Fig. 8 shows the global interface widthW2 as func-
tion of time for severalLx’s. The drawn lines correspond t

FIG. 9. A typical configuration of the scars on the sandb
created by the avalanches. The driving edge is located at the bo
of the graph while avalanches propagate upward in they ~or t)
direction. The system sizes areLx5256 andLy5512.

FIG. 10. Finite-size approximates of the scaling exponents
stationary surface of sandbox~or correlated MC runs for the inter
face model! with a* defined by Eq.~21! and b by Eq. ~7!. The
solid ~dashed! curves are for the continuous~discrete! height model.
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avalanche-correlated MC runs and the dashed line to con
tional uncorrelated MC averaging. The drawn lines ha
bumps, i.e., the avalanche-correlated runs lead to roug
interfaces at intermediate times.

This enhanced interface roughness is caused by the s
left by earlier avalanches. The scars vanish at very largy
because avalanches reaching that far span the entire sy
in the x direction. Figure 9 shows a typical configuration
scars. The lines are the traces of previous avalanches,
their edges. Latter avalanches wipe them out partially.

For finite system sizes, the stationary state interface w
follows from the plateaus at large times. There t
avalanche-correlated and uncorrelated MC curves coinc
This is to be expected, because the large avalanches that
the entire system~in the x direction at largey) occur at
regular MC time intervals, such that the largey part of the
surface~i.e., the stationary state of the growth process! is
completely refreshed periodically and therefore sampled
fectively like in uncorrelated MC runs. As a result, th
roughness exponenta, defined by Eq.~8!, is the same for the
both cases.

Most avalanches do not extend into that largey part of the
surface. They terminate in the scarred part of the surfa
Therefore, we define an alternative roughness exponenta* ,
associated with the scaling of the bumps, in terms of
maximized width

W* [max
y

W~Lx ,y!;Lx
a* ~21!

more relevant for the avalanche scaling properties. Note
for uncorrelated MC runs,a* 5a, since the interface width
increases monotonically in time.

The conventional method for measuring the exponentb,
involves the slope at timesy,Lx

z , and thus is sensitive to th
bumps inW as well. The results are shown in Fig. 10. Com
pared to those in Fig. 4, they clearly converge less smoot
with larger corrections to scaling and we should wonde
they converge to the conventional exact KPZ valuesa
51/2 andb51/3, at all.

In the lower panel of Fig. 8 we plotDW2 as function of
time, the difference between the squared widths
avalanched-correlated MC runs~the drawn lines in the uppe
panel! and completely uncorrelated MC runs~the dashed
lines in the upper panel!. For infinite system size,DW2

scales asDW2;ys with an exponent that numerically is ver
close tos.1/3. Since the width itself scales asW2;y2/3, it
follows that the bumps in the width curves are a transi
FSS effect.

This settles our basic issue at the numerical level;
avalanche-correlated nature of the MC runs does not cha
the interface scaling exponents, but only gives rise to s
corrections to FSS. In the following two sections, we w
identify these corrections to scaling with the scars on
surface left behind by previous avalanches.

We start this analysis here by casting the deviations i
the framework of corrections to scaling from a so-called
relevant operator in the sense of renormalization theory.
Osc(x) be the irrelevant operator andu be its scaling field.

m

r
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DIRECTED AVALANCHE PROCESSES WITH . . . PHYSICAL REVIEW E66, 011306 ~2002!
This amounts to presuming that the avalanche correla
between MC runs can be represented effectively by addin
the KPZ Langevin equation~5!, a term uOsc(x). We will
have to determine below howOsc(x) is related to the density
of scars on the interface space-time world sheet left by p
vious avalanches. According to scaling theory, the prese
of such a term to the Langevin equation leads to correcti
to scaling in the interface width as

W2~Lx ,y,u!5b2aW2~b21Lx ,b2zy,byscu!, ~22!

i.e., in the infinite-size limit,Lx→`, to

W2~y,u!5y2a/zS~yysc/zu!, ~23!

and by expanding the scaling functionS, while assuming that
ysc,0, such thatu50 is a stable fixed point, and the arg
mentyysc/zu is a small parameter, to

W2~y,u!5y2a/z@S~0!1yysc/zuS8~0!1•••#. ~24!

The critical exponentysc of this irrelevant scaling field mus
take the valueysc52a to account for thedW2;y1/3 correc-
tions in the interface width we found above. Moreover, t
operator must scale as

Osc~x!;b2xsc ~25!

with critical dimensionxsc5z, since the KPZ equation~5!,
implies that the termsuOsc(x) and]h/]t must scale alike. In
the following two sections, we will trace down the geomet
identity of this mysterious operatorOsc, starting with the 1D
version of the model.

VIII. SURFACE ROUNDING IN THE 1D
UNLOADING SANDBOX

The 1D version of the unloading sandbox shows the sa
type of differences between uncorrelated and avalanc
type-correlated MC runs as the 2D version. We determi
numerically the difference between the interface width
avalanche-correlated and uncorrelated MC runs, and fo
that it diverges as a power lawdW2;y1/2, with an exponent
that is again~like in 2D! half the size of that forW2;y
itself. According to the corrections to scaling formalism~24!,
the scaling dimension ofOsc must therefore be equal toxsc
5z, just as in 2D.

The underlying interface dynamics becomes a ze
dimensional growth model, i.e., a simple random walk in
h direction with a nonzero drift velocity to account for th
net tilt of the surface. The exponents of the various a
lanche distribution functions must obey the same type
relations as in Sec. V:

t l5
s2a

z
, td5

s2z

a
, tm5

s

a1z
, ~26!

and

s5z12a. ~27!
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Without loss of generality we can seta51 ~measure all
lengths in terms ofd). These identities are satisfied exact
and the exponents are the same for uncorrelated
avalanche-correlated runs. From the interface dynamics
spective, a single directed random walker, the diffusion eq
tion character of the dynamics implies thatz52a52. The
values of all the other exponents follow from this, and a
consistent with their values from the avalanche perspect
There, we are dealing with the statistics of merging rand
walkers. The number of walkers at a given ‘‘time’’y is equal
to the number of avalanches of a lengthl equal or larger than
y in the ensemble of MC runs. The density of the walke
decays asr(y);y21/2 @15#, such that the distribution of ava
lanche lengths obeys the form

Pl~ l !5F2
]

]y
r~y!G

y5 l

; l 23/2, ~28!

and therefore thatt l53/2. The depth of the avalanche fo
lows from the maximum separation between two subsequ
walkers, and scales asd; l 1/2, i.e., a/z51/2. The mass
scales asm; ld; l 3/2, i.e., (a1z)/z53/2 andtm54/3.

This can be compared directly with the exponents of ot
1D sandpile models, e.g., with results by Paczuski a
Boettcher@16# on the so-called Oslo sandpile model, whe
t[tm'1.55 andD[(a1z)/z'2.23.

Let us turn our attention now to the central issue, t
difference between uncorrelated versus avalanche-corre
MC runs. Adding a term such asuOsc to the diffusion equa-
tion of motion creates a correction to the drift velocity of th
random walk. This suggests that we can identify the geom
ric meaning ofOsc directly by studying the deviations of th
slope near the driving edge of the surface from its asympt
value.

The average surface slope does not show any deviat
~near the driving edge! from sc/2 when we run the dynamic
as a conventional random walk, which amounts to ‘‘co
pletely refreshing’’ the surface after each MC run~uncorre-

FIG. 11. Traces of stable sand surface over 256 avalanche
1D sandbox model withLy5256. The system is driven from the le
at y50.
6-9
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lated MC runs!. The avalanche-correlated runs do show
rounding of the surface near the driving edge,

s~y!.Ay2k1 1
2 sc . ~29!

The numerical results for the exponent yieldk50.9860.03.
This confirms our corrections to scaling picture, becaus
predicts thatxsc5z from the interface width sincek5xsc/z
andz52 for random walks.

This rounding originates from the distribution of termin
tion points of the avalanches. A new random walk starts
low the previous one and propagates until it meets the
vious trajectory and terminates. The avalanche is the sp
between the trajectory of that new random walk and the
ready existent surface. The amount of rounding of the sl
near the driving edge is proportional to the distributionr(y)
of merging points on the surface. These merging points r
resent the scars left from previous avalanches. Each ran
walker by itself does not contribute to the rounding, i.e.,
average each has a constant slopesc/2. However, every new
walk lies below the previous surface, such that down stre
from every avalanche end point the surface is systematic
lower than beyond it. This upward bias across the avalan
merging points~by an amount, e.g.,sc/2, on an average, in
the discreteh version of our model! gives rise to the surface
rounding and yields that the latter is proportional tor(y).

The entire process and the set of subsequent stable
surfaces~Fig. 11! is therefore equivalent to a system
merging random walkers obeying the ruleA1A→A. That
type of dynamics has received extensive attention rece
and its various scaling properties are known exactly@15#.
There is little doubt that our 1D unloading sandbox is exac
soluble, using absorbing-wall-type random walk mathem
ics @17#. However, we will refrain from pursuing this path i
this paper.

The critical dimension ofOsc;r(y) can be estimated~for
intuition building purposes! as follows. After adding a term
uOsc to the KPZ equation we should also write down
equation of motion forOsc itself, to close the equations. Th
latter is not trivial, because the scars on the surface build
slowly in time, such that that the equation of motion forOsc
is highly nonlocal. On the other hand, the linear nature of
diffusion equation allows one to be somewhat frivolous w
the order in which averages are taken~without losing the
essential physics, nor even the correct critical exponents!.

Let r t̃(y) be the end-point distribution aftert̃ avalanches
~MC time steps!. During the last MC time step, one ava
lanche runs through the system. It refreshes the entire sur
before its termination pointy5 l t̃ , such thatr t̃ at sitey does
not change if the avalanche terminates beforey; r t̃(y)51 if
it terminates aty; andr t̃(y)50 if it extends beyondy:

]r t̃~y!

] t̃
5Pl~y!2r t̃~y!E

y

`

Pl~ l !dl ~30!

with Pl( l ) the probability that the avalanche terminates
distancel from the driving edge. The stationary state en
point profile therefore takes the form
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E
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`

Pl~ l !dl

, ~31!

andPl( l ); l 2t l yields

r~y!5
1

t l21
y21. ~32!

In other words, the surface curvature scales asDs;y2xsc/z

with xsc5z, in agreement with the above results. Intere
ingly, this result is independent of the actual value of t
scaling exponentt l provided thatt l.1, which has to be true
for Pl to be normalizable.

In conclusion, in 1D we identified the crossover scali
operator with the density of avalanche end points. These
resent indeed the scars on the surface, the memory of p
ous avalanches.

IX. AVALANCHE ROUNDING NEAR THE DRIVING
EDGE IN 2D

As in the 1D model, the surface slope is modified by t
iterated avalanche process. However, unlike in 1D, the a
age slope near the edge is not constant already in con
tional interface dynamics~where the entire surface is bein
refreshed during each MC run!. The surface slope is relate
to the growth rate of the underlying interface, and the rou
ing of the slope near the driving edge represents the trans

FIG. 12. Scaling exponent for boundary correction to the lo
slope of fresh 2D sandbox surface~or, in the interface language
transient growth rate from a flat interface!, sf(y)2sf(`);y2k f, and
its correction due to the iterated avalanche process,Ds5s(y)
2sf(y);y2k.

FIG. 13. Two possible cases at a boundary of an avalan
cluster ~the shaded area!: ~a! avalanche expands;~b! avalanche
shrinks. The local slopes along the arrow marks is reduced in~a!
while increased in~b!.
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DIRECTED AVALANCHE PROCESSES WITH . . . PHYSICAL REVIEW E66, 011306 ~2002!
growth rate of the KPZ interface from the initial configur
tion, e.g., a flat one:

sf~y!.v01cy2k f ~33!

with y playing the role of time and the subscriptf denoting
that the entire surface is refreshed. By direct numerical sim
lation of uncorrelated interface dynamics, we findk f'0.7
~the left panel of Fig. 12!. This is consistent with conven
tional KPZ scaling and power counting

s;h/y;ya/z21;y22/3, ~34!

suggestingk f52/3.
We evaluate the surface slope profiles(y) in avalanche-

correlated dynamics MC runs, in terms of the difference w
respect to the uncorrelated case,

Ds~y!5s~y!2sf~y!;yk. ~35!

The FSS analysis for the exponentk ~the right panel of Fig.
12! yields k51.0560.07. This is in agreement withxsc5z
andk5xsc/z implied by the corrections to scaling formalis
~24!.

Inside the bulk of an avalanche the interface is fully
freshed, and scales as in uncorrelated KPZ dynamics. At
avalanche boundaries, the slope of the surface is biased
wards, because of the merging with previous MC ru
~which are on average shifted upwards by an amountsc/2Lx
each time an avalanche is triggered!. This means that theDs
is proportional to the density of scars in the surface. In 1
the scars are pointlike objects, the end points of the a
lanches; but in 2D the avalanche boundaries are line obje
This nonscalar aspect makes that most line-segment co
butions, when integrated along the boundaries of an a
lanche, cancel out against each other.

To be more precise,s(y) represents only the compone
of the slope in they direction, and the magnitude of thos
jumps depends on the local angleu the boundary makes with
the y axis. This is an odd function,D(u)52D(2u), as
illustrated in Fig. 13. The slope change is negative when
avalanche opens up and positive when it narrows down.
latter also implies thatD(u) has opposite sign for the left an
right boundary of each avalanche. Notice that, while in
lattice modelu takes only two discrete values, it renorma
izes to a continuous variable at larger length scales.

Let us estimate the change in surface slope due to th
scars in the same spirit as we did successfully in 1D. C
sider one specific surface, and letst̃(y) be the surface slope
in a slice of the surface at distancey from the driving edge,
averaged over allx, after t̃ avalanches~MC time t̃ ). The last
avalanche changes this as follows. Letwt̃(y8) be the width
of this avalanche, which terminates aty5 l t̃ , in slicey8. The
inside area of the avalanche is completely refreshed
therefore has the same average slopesf(y) as in ordinary
KPZ dynamics~totally refreshed subsequent world sheet!.
This leads to the following equation of motion:
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]st̃~y!

] t̃
5@D~uL!2D~uR!#1wt̃~y!@sf~y!2st̃~y!#.

~36!

The first term on the right hand side represents the crea
of the two new avalanche edges, and the second term re
sents the refreshed surface inside the new avalanche.
that ]st̃(y)/] t̃ 50 when this latest avalanche does not rea
slicey, and that this is automatically taken care of because
that caseuL5uR50 and D(0)50, while wt̃(y)50 for y
. l t̃ . In the stationary state, after averaging over all poss
avalanches, Eq.~36! leads to

wt̃~y!@sf~y!2st̃~y!#5D~uL!2D~uR!. ~37!

Next, we perform an heuristic coarse-grainin
renormalization-type transformation. At large length scal
the average angleu remains small, such that the right han
side can approximated as

D~uL!2D~uR!.auL2uR.a
]wt̃~y!

]y
. ~38!

Finally, we presume that in the stationary state it is not
bad to treat the KPZ height fluctuations deep inside the b
of an avalanche and those near its edge as decoupled~at least
in lowest order! such that

Ds~y!5sf~y!2st̃~y!5a
]

]y
ln@wt̃~y!#. ~39!

This yieldsDs(y);y21, exactly the power-law decay we ar
looking for, and consistent with all the above numerical
sults.

The only requirement for the latter is thatwt̃(y);y2j

decays as a power law. Again, like in Eq.~32! for 1D, the
value the critical exponentj does not matter.wt̃(y) is equal
to the average avalanche width in slicey averaged over all
avalanches. It is reasonable to expect, and we confirmed
merically, that this quantity scales with the same exponen
the average width of all avalanches longer thany, i.e., as

E
y

`

w~ l !P~ l !dl;y1/z2t l11, ~40!

which yieldsj.1/3.
We are now ready to represent the crossover scaling

eratorOsc(x) in terms of the scars on the surface. Consid
time slicey, Osc(x)50 when no scar line runs through sitex,
and otherwise is proportional to the angle the scar line ma
with respect to they axis. However, the sign also flips de
pending on whether this represents a left or right boundar
the original avalanche. The latter can be denoted by an ar
along the avalanche scar line. Alternatively, we can assoc
an age fieldg(x,y) to the entire surface, representing the a
of the surface segments~how many MC time steps ago sitex
was updated!,
6-11
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Osc;
êy•“g

u“gu
~41!

with êy a unit vector in they direction. The denominato
arises because the magnitude of the age jump across the
line u“gu does not play a role.

X. SUMMARY

In this paper, we studied a directed avalanche model
spired by the unloading of a sandbox by means of a slo
lowering wall, and the wish to setup an avalanche dyna
rule belonging to the same universality class as KPZ-t
interface growth. The 2D sand surface represents the w
sheet of the 111D growing interface.

The scaling exponents of the avalanche distributions
directly related to the dynamical and stationary state rou
ness exponentsz anda of KPZ growth in 111D @Eq. ~11!#.
However, we encounter one crucial difference. From the a
lanche perspective, the conventional uncorrelated MC r
correspond to completely refreshing the surface, i.e., an
semble average over all possible initial conditions, witho
ever running an avalanche. From the KPZ perspective,
avalanche dynamics represents an unusual MC ensembl
eraging procedure where subsequent interface world sh
only differ inside the single avalanche. This avalanch
correlated-type averaging enhances the interface rough
at time scalesy,Lx

z , due to the scars of previous av
01130
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lanches. It required a careful study, combining numerical a
analytical tools, presented in the second half of this pape
establish that these scars give rise only to larger than u
corrections to scaling and not to fundamentally different v
ues of the global roughness scaling exponentsz anda.

The effect of the scars can be represented by introduc
an additional age fieldg(x,y) to the height variablesh(x,y),
that keeps track of how many MC runs ago site (x,y) par-
ticipated in an avalanche. This age-field couples into
KPZ equation~5! as an additional term of the formuOsc.
The operatorOsc is proportional to the angle a scar mak
with respect to the time axis, and can be expressed in te
of the age field as shown in Eq.~41!. We establish that the
coupling of this age field to the KPZ equation is irrelevant
the sense of renormalization theory, both numerically and
writing down approximate equations of motion foruOsc.
The scaling fieldu renormalizes with exponentysc52a and
Osc scales with critical dimensionxsc52z.

We believe that the results of our work presented here
be generalized to most ‘‘Markovian’’ avalanche dynamic sy
tems with local row-by-row-type toppling rules, and that th
is a promising route to improve our understanding of t
scaling properties of avalanche dynamics in general.
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