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Directed avalanche processes with underlying interface dynamics
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We describe a directed avalanche model; a slowly unloading sandbox driven by lowering a retaining wall.
The directness of the dynamics allows us to interpret the stable sand surfaces as world sheets of fluctuating
interfaces in one lower dimension. In our specific case, the interface growth dynamics belongs to the Kardar-
Parisi-Zhang(KPZ) universality class. We formulate relations between the critical exponents of the various
avalanche distributions and those of the roughness of the growing interface. The nonlinear nature of the
underlying KPZ dynamics provides a nontrivial test of such generic exponent relations. The numerical values
of the avalanche exponents are close to the conventional KPZ values, but differ sufficiently to warrant a
detailed study of whether avalanche-correlated Monte Carlo sampling changes the scaling exponents of KPZ
interfaces. We demonstrate that the exponents remain unchanged, but that the traces left on the surface by
previous avalanches give rise to unusually strong finite-size corrections to scaling. This type of slow conver-
gence seems intrinsic to avalanche dynamics.

DOI: 10.1103/PhysRevE.66.011306 PACS nuniherd5.70.Ht, 05.65tb, 05.70.Np, 47.54:r

I. INTRODUCTION This novel world-sheet-type connection between ava-
lanche dynamics and interface growth is particularly prom-
Avalanche phenomena are common in nature. Exampleising, because interface dynamic processes such as EW and
range from accumulating snow on mountain slopes, slowKardar-Parisi-Zhan§12] (KPZ) growth are very well under-
shearing between continental platgld, rerouting in river  stood, in particular, in +1 dimensions (¥ 1D) where the
networks, to creeping magnetic flux lines in super conductorscaling properties are known exactly. However, the above
[2]. Following the work by Balket al. [3], physicists aim to models that are linked to EW-type growth are rather poor
capture the essential aspects of such dynamical systems wigixamples, because EW growth is described by a simple lin-
simple automaton processes, commonly referred to as sandar stochastiddiffusion-type Langevin equation; correla-
pile models and self-organized criticalitOQ. Impressive tions factorize, and important caveats in the relation to ava-
successes have been achieved, such as reproducing powlanche dynamics can be obscured by this simplicity.
law distributions in avalanche events similar to those ob- We set out to generalize this approach to nonlinear inter-
served in nature, and the start of a classification scheme déce dynamic processes, and recently introduced a directed
such processes in terms of so-called universality clggges unloading sandbox modgL3] in which the two-dimensional
Unfortunately most of these are numerical in nature. Analyti-(2D) avalanche dynamics relates te-1D KPZ-type inter-
cal exact results remain rare. face growth. We derived exponent relations between the ava-
Directed avalanche phenomena form a subclass of thedanche and interface growth scaling properties, which are
SOC processes. Dhar and Ramaswamy introduced the firgeneric, and valid beyond our specific model. Our numerical
directed sandpile model and solved it exad®y. This was results for the avalanche distributiorifor length, width,
possible because in their model the avalanche propagation @epth, and magsfollow indeed these exponent relations.
governed solely by its two edges, and those two follow in-Moreover, the avalanche critical exponents obey the pre-
dependent random walk dynamics. Tadind Dhar intro- dicted KPZ values within a few percent, an accuracy typical
duced a directed model in which particles are allowed to pileéo avalanche simulations. However, our numerical accuracy
up beyond the critical height, by replacing the automaton’dss better than that; mostly because of a careful finite-size
deterministic toppling rule by a stochastic ditd. The den-  scaling (FSS analysis. The exponents seem to converge to
sity of critical sites tunes itself and at distances far from thevalues that are slightly different from the KPZ values.
driving edge the propagation of active sites approaches the This left us with a puzzle. What is the origin of these
directed percolatiof7] threshold. The scaling properties of small deviations? Is this a fundamental effect; or do the ex-
the avalanche distributions are thus linked to the critical exponents ultimately converge to the KPZ values, but with un-
ponents characterizing the DP universality class. Another exdsually large corrections to scaling. In this paper we address
ample of a stochastic directed avalanche process is the mod#lese issues. We also provide a more detailed discussion of
introduced and studied numerically by Pastor-Satorras anthese world-sheet-type relationships between avalanche and
Vespignani[8]. Similar as in the above model by Dhar and interface growth dynamics. Our first paper was short and did
Ramaswamy, the stable landscape configuratifsesween not include many of the details that are crucial for the analy-
avalanche evenkdack internal correlations in the stationary sis presented here.
state. This allowed Paczuski and Bas$8rand also Kloster The fundamental difference between conventional KPZ
et al.[10] to link this dynamic process to so-called Edwards-interface growth and avalanche dynamics arises from the av-
Wilkinson [11] (EW) interface growth and to derive the ex- eraging process over KPZ-type space-time world sheets. In
act scaling exponents of the avalanche distributions. normal Monte Carlo(MC) simulations of interface growth
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the distribution functions are determined in terms of en-
semble averages over a set of totally uncorrelated space-time
MC runs. In contrast, the avalanche dynamics gives rise to
KPZ world sheets that are strongly correlated. Two subse- . ‘, »
guent MC runs are identical except inside a single avalanche o | ’
area. This difference in averaging, uncorrelated versus "
avalanche-correlated MC runs, therefore emerges as a key
issue for understanding the scaling properties of avalanche
dynamics. This issue did not arise in the earlier EW-type
avalanche models due to the linear nature of the EW process.
However, for nonlinear dynamics, such as KPZ, avalanche- » = ’
correlated-type sampling could well lead to novel interface
scaling exponents.

Speaking against a shift in the values of the exponents,
are arguments that: the KPZ stationary state, i.e., the sand el
surface profile far way from the driving edge, cannot be af- ™
fected by the avalanche-correlated-type averaging, because
large avalanches that span the entire width of the box occur
periodically. These completely refresh the surface far away . . )
from the driving edge regularly, and thus wipe out all corre-= — Z With z the KPZ dynamic exponent. Finally, we sum-
lations between MC runs. This suggests that we are onl§f'@ize our results in Sec. X.
dealing with much larger than usual corrections to scaling.

The details are more complex than this simple argument, but Il. AN UNLOADING SANDBOX
we will establish that indeed the exponent values do not

FIG. 1. Sandbox with a slowly lowering retaining wall.

Imagine a box filled with granular material, as illustrated
change. _ _ _ in Fig. 1. One of its four retaining walls is slowly lowered,
_ The paper is organized as follows. In the following sec-g;ch that the sand spills out from that side, and thus slowly
tion, we present the unloading sandbox model. In Sec. lllynjoads the box and establishes a sloped surface. In the qua-
we comment on how directed avalanche dynamics can bgistatic limit, the wall moves slow enough that the unloading
linked to interface growth in one lower dimension. Next, in events can be described as distinct avalanches. The box can
Sec. IV, we show that in the interface growth interpretationbe three dimensional, leading to 2D avalanche dynamics on a
our specific model belongs to the KPZ universality class. In2D surface, or can be 2Dike in a very narrow boxgiving
Sec. V, we derive the generic exponent relations betweerise to 1D avalanches on a 1D surface.
interface growth and directed avalanche dynamics, and in Inspired by this we consider a so-called solid-on-solid
Sec. VI we test this numerically for our specific model. model defined on a 2D lattice. Height variableér) are

In the second half of this paper we address the smalfiefined on a square lattice. We will consider two versions of
deviations in the numerical values of the exponents fromhe model. In the continuous height version, the heights are
those of conventional KPZ growth. In Sec. VII, we presentreal numbers. In the discrete model, the heights are integers
numerical results detailing how the traces left on the surfac@(r)=0,=1,+2, ... . Theformer corresponds to a continu-
profile by previous avalanches influence both the avalanchgus material without internal structure, but strong cohesion
exponents and the interface growth ones. These scars in thg to a specific length scag , while the latter corresponds
rough surface enhance the surface roughness. We cast thislayered material where the surface height is quantized.
enhanced interface roughness in terms of corrections to scal- The 2D lattice is rotated diagonally such that the propa-
ing, and determine what value the critical dimension of thegation direction of the avalanche is along the diagonal direc-
corresponding irrelevant operatx. (in the sense of renor-  tion denoted byy. This is the direction in which the ava-
malization theory should have. Next, in Sec. VIII, we iden- |anche will run. Throughout this paper the coordinate
tify the geometric meaning dD, starting with a study of perpendicular toy will be denoted byx. Figure 2 illustrates
the one-dimensional version of our model where a similatthis geometry.
phenomenon takes place. In 1D the interface growth process The configurations are subject to the following stability
is a simple random walk, and the avalanche-correlated sangondition. The column of particles on site=(x,y) is sup-
pling relates to the scaling properties of merging randonmported by the two columns,=(x—1y—1) and r,=(x
walkers. O represents the distribution of avalanche end+1y—1) directly below it and is stable when its height is
points in the 1D surface, and can be studied directly from thgess than the minimum of the heights at these two supporting
rounding of the surface profile near the driving edge. In Secsjtes increased by a fixed amount:
IX, we return to the full 2D case. The scars of previous
avalanches form lines on the surface. We iden@fy, with h(r)<min[h(r)),h(r,)]+s;, D
the angle these lines make with respect to the direction per-
pendicular to the driving edge, and confirm with an analyticwheres, is a constant. In the version of our model where the
argument that the critical dimension @f is equal toxs.  heights are continuous variables, represents the only
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In a typical SOC process, the quasistatic limit must be
taken such that the surface regains full stability before a new
grain is being removed at the driving edge. Since avalanches
of all sizes appear, this means that the velocity of the lower-
ing wall should be inversely proportional to the size
L, XL, of the box. Our process, however, is Markovian, i.e.,
row by row in they direction. Removal of particles in row
does not affect the stability of the lower levels. In that case
the lowering velocity needs only to be inversely proportional
toL,.

FIG. 2. Lattice structure of sandbox model in 2D. The analysis of the dynamics involves distribution func-
tions of various characteristic features of the avalanches. The

length scale in theh direction and can be set equal to 1 common examples are: length, width, depth, and mass. The

without the loss of generality. Throughout this paper we will 2valanche length will be defined throughout this paper as
also sets,=1 in the discretéh model. the maximum distancg the avalanche travels from the driv-

Consider a stable configuration, after-1 avalanches ing edge; the widthw as the maximum departure of the

~ o o ) " coordinate(perpendicular to the propagation directidrom
The tth avalanche is triggered at the highest site(x;,0),  the trigger pointx coordinate; the depté as the maximum
on they=0 driving boundary(or, in the discrete height pejght change the avalanche creates at any of the affected
model, by randomly choosing one of the highest $isd  sijtes; and the masm as the total amount of material re-
reducing its height by a random amount@r=<s.. This  moved by the avalanche. All the above are dimensionless
likely creates unstable sites in the ngxt 1 row. Those are  quantities measuring the numbers of lattice spacingsnul-

updated by replacing their_height by an amount eq_ual to th@iples of s, in the h direction in our numerical presentations.
lowest of the two supporting columns in the previous row

and then adding an uncorrelated random amoust,Qr)

<s, with uniform distribution, as 1. AVALANCHES VERSUS EPITAXIAL INTERFACE
GROWTH
h(r)—min[h(r}),h(r.) ]+ 5(r). 2 The focus of this paper is on how the above avalanche

dynamics relates to interface growth in one lower dimension.

This updating continues row by row until all the sites areEach stable sloped surface configuration of a directed sand-
stable again. Only after that the next avalanche is starteghile can be reinterpreted as a world shégiace-time con-
The toppling of a site only affects the stability of the two figuration of an interface in one lower spatial dimension.
sites immediately above it in the nextrow. Therefore, we The direction in which the avalanches propagate plays the
can update the system row by row in increasing ordey.of role of time and the perpendicular coordinates the role of

Direct experimental realizations of this unloading sand-space. Our 2D unloading sandbox is equivalent to a 1D
box model are not our immediate concdthe focus is on growing interface. Such an interpretation makes sense only
establishing a generic theoretical relationship between avawhen the stability condition and the avalanche dynamic rule
lanche dynamics and interface growthut we expect that is directional and local in space time, such that causality is
this model is applicable to actual experimental unloadingnot violated in the interface growth interpretation. The sta-
sandboxes. One of the most important issues in this contexility condition (1) and toppling rule(2) of our model are
is the row-by-row nature of the toppling rule. This is a cru- row by row in nature and therefore indeed Markovian in this
cial feature for our purposes, allowing the identification with sense.
KPZ interface growth(in the following section In real un- Every stable configuration of the sandpile represents a
loading sandboxes the sand removed from somells down  possible interface growth lifelingspace-time-evolution in-
hill and likely disturbs the already stabilized lower surfaceterface world shegt The conventional procedure for deter-
levels. Experimental realizations can avoid this from happenmining the scaling properties of growing interfaces is to av-
ing, e.g., by choosing very light graingompared to the erage over a large set of completely independent MC runs.
cohesion forces Note that our dynamic rule does not allow This would mean, in sandbox language, an ensemble average
the buildup of any pocket&eeper thars.) on the surface over completely refreshed surfaces, each totally uncorrelated
that might trap such downward rolling grains. from the previous onéexcept typically for the initial condi-

Conservation laws are crucial to avalanche dynamics. Untion in rowy=0). The toppling rulg2) is applied to all sites
like most avalanche processes, our model does not conserire every row, and repeated row by row, instead of only the
mass while the avalanche propagates. That might raise thenstable sites created by toppling only the highest site in the
specter of our model not beingelf-organized critical. The initial row.
connection to KPZ growtlgan intrinsic critical procegddis- In avalanche dynamics, however, two subsequent growing
pels this phantom. Moreover, the global slope of the surfacénterface lifelines in this ensemble differ only inside the ava-
is preserved during each avalanche run, and conservation t#nche area. From the interface growth perspective this rep-
steps in the profile plays the role analogous to conservatioresents a rather peculiar and dangerous correlated-type MC
of mass. run averaging procedure. The MC runs of KPZ space-time
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configuration are strongly correlated, and this raises the spec- time=t

ter of a change in the interface roughness scaling properties. h ---- min[h(x-1),h(x+1)]
The numerical evidence, presented below is sufficiently am-
biguous that this issue will preoccupy us in the second half
of this paper.

IV. KPZ GROWTH

In this section, we demonstrate that the interface growth )
model conjugate to the unloading 2D sandbox belongs to the time=t+1
1+1D KPZ universality class. The time evolution of the
interface is governed by the the toppling rule of the sand
model withy in Eq. (2) representing time,

h(x,t+21)=min[h(x+1t),h(x—=10) ]+ n(x,t). (3)

In the conventional global-type interface evoluti@re., to-

tally refreshing nonavalanche-type uncorrelated MC yuns |G, 3. The interface growth dynamics described by E).
every site in rowt+ 1 is updated according to this rule. with upper panel showing movement of stefrem the drawn to

Figure 3 illustrates the interface dynamics for one timedashed lingand lower panel random depositiotghaded areato
step,t—t+ 1. Conceptually, the time step can be split into the interface.
two parts; the deterministic nfihoperator part and the sto-
chastic random deposition part. To confirm the KPZ nature and make sure that hés

Note that because of the diagonal orientation of the squargirge enough that corrections to scaling from the EW point
lattice (see Fig. 2, the lattice sites are not “stationary in (\=0) are not obscuring the KPZ scaling, we perform MC
time.” The conceptually easiest interpretation to resolve thissimulations on the interface dynamics as illustrated in Fig. 3.
flip-flopping is to first double the number of lattice sites andThe MC runs are completely independent.
then require them to be paired alternately with their right or \We measure the time evolution of the interface witith
left neighbors at even and odd times; at even times sites 2defined as
and 2n+ 1 are fused to be at equal heights and at odd times
the 2n—1 and 2 sites.

The upper panel shows the deterministic first half of the
update(from the drawn to the dash lineThe partners switch o
and the mifi ] operation equalizes their heights by choosing'ith Over bars(angle brackefsindicating average ovex
the lowest of the two, so this step always removes material€nNSemble Starting from, e.g., a flat initial condition it

This can be interpreted also in terms of a movement of thghould scale as
steps in the interface. All up steps move to the right and all
down steps to the left; while up and down steps merge when W~t# )
they meet at one site.

The lower panel illustrates the second half of the updateat intermediate times@t<LZ, and saturate at
The height of each fused pair increases by a random amount
0=s7y=<s;. W~L¢ (8

Deposition-type interface dynamics like this typically be-
longs to the KPZ universality clag42]. Indeed, Eq(3) can
be rewritten as

WA(L,,t)=((h—h)?) (6)

for t>L%; with L, the length of the 1D interface. The expo-
nents for the KPZ universality class in+1D are known
h(x,t+1)=2[h(x+1t)+h(x—11)] exactly Witha; 1/2, B=1/3, andz= a{ﬁ=_3/2.
The numerical results are shown in Fig. 4. The values of
=3 |h(x+1t)+h(x—11)|+n(x,t), (4  a(L,) are obtained from the saturated interface widths by
imposing the scaling forn(8) at adjacent values of the sys-
and from this it can be easily identified to be a discrete formem sizel,. Similarly, the values of3(t) are obtained from
of the KPZ Langevin equation, the transient interface widths by imposing the scaling form
(7) at nearby times. We like to remind the reader that simple
5) log-log plots of W versusL, andt look typically impres-
sively straight, but are notoriously inaccurate. The construc-
tion of effective exponents, in the above manner might at
The crucial point is that the coefficient of the nonlinearfirst glance look less impressiv¢he data appears noisjer
term\ is clearly present. There is no hidden special symmebut this brings the analysis to a higher level where the lead-
try of some kind that makes it vanish by accidentM#0, ing corrections to finite-size and finite-time scaling become
the KPZ equation would reduce to EW growth. visible.

[?h_Vzh )\Vh 24
i E( )<+ 7.
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The approach td.,—« in Fig. 4 is consistent with the o B

leading correction to scaling exponent=—1/2 expected 0.5 ' 0.35 '
from the EW termV2h in Eq. (5). The corrections to FSS are
stronger when the height variables are discrete than when
they are continuous. This is consistent with the smaller
growth rate in the discrete height interface, and the fact that
the growth rate is typically proportional to the nonlinear term
\A. On average, more material is removed during the first
deterministic part of the update process when the surface
heights are discrete.

045 03

1 \\r\q |
0'250 0.04 0.08
1/t

04

FIG. 4. MC results for the global interface width: left, finite-size
V. SCALING PROPERTIES OF 2D AVALANCHES (Ly, in the unit of lattice spacingestimates for the saturated sur-

. . . . face width exponenk; right, finite-time ¢, in MC time steps es-
In this section, we derive the exact relations between th@mates for the transient interface width exponghtrom a flat

scaling properties of the avalanches antdID KPZ inter-  njtial configuration. The soliddashedl curves are for continuous
face growth. However, in the latter the world sheets arqgiscrete height model.
sampled in the correlated manner as outlined in Sec. Ill.

The characteristic feature of SOC is the lack of typical o
avalanche length, width, depth or mass scales. The probabil- ™ 1ista (13
ity distributions follow power laws. For example, the distri-
bution of avalanche widths scales as There is one more relation between these critical expo-

B nents(leaving only two independent oneJhe avalanche is
Py~wTw ©) initiated by lowering the bar at the driving edge of the box.

In the stationary state the average surface profile is invariant,
and therefore it shifts down at the same rate as the lowering
*ar. Thus, we know how much mass drops out of the box on
an average.

To be more precise, during each avalanche event, the
height of only one single boundary site w0 is lowered
by, on average, an amousy/2. For a sandbox of widtlh,

P(I,w,8)=b~"P(b~2,b~w,b~5) (10) the bou_ndary row is Ioweret_:l bs/2 afterl, avalanches. In _
the stationary state, the entire surface matches this lowering

with b an arbitrary scale parameter. The exponentg, and speed, such that the amount of removed sand is on an aver-
a are expected to be robust with respect to details of théd€ equal td.,L,s;/2. Therefore, the average mass of each
dynamic rule, and thus are characteristic of the universalitfvalanche must be equal to
class to which this avalanche dynamics belongs. Single pa-
rameter distributions, such &, , follow by integrating out
the other variables. This implies the following expression
for the 7 exponents:

with scaling exponent,,. Similarly, the avalanche length,
depth, and mass distributions scale as power laws with e
ponentsr, 75, andr,. We can summarize this in a meta-
distribution functionP(l,w,8); the probability to find an
avalanche of a specific width, lengthl, and depths obeys
the scaling relation

(my=3scLy. (14)

“The scaling properties of the mass distribution function tie
into this because

oc—1-«a o—1-z
n=——— mw=o-z-a, T=— —, (11 <m>=f m’Pp(m’)dm’, (15)
or inverted which can be evaluated using the metadistribution function
as
B Tw— 1 _ Tw— 1 _
zZ= -1 a= 1 o=TytZ+a. (12

L o o0
<m>~f ydIJ' dwf dslwsP(l,w, 5)

Let us presume that the avalanches are compact, i.e., that ° ° °
the inside and the boundaries of an avalanche are well de- * * *
fined and distinguishabléunlike in certain fractal struc- +mLny dIJl) dwfo doP(l,w,5). (16)
ture9, and that the sizes of the holésnaffected regions Y
inside the avalanche do not scale with the avalanche siz&his equation incorporates finite-size effects. The box is pre-
This can be checked visually from typical simulation con-sumed to be wide and deep enough, such that the ldngth
figurations, and both assumptions are indeed satisfied in owf the box(in the direction perpendicular to the driving edlige
dynamics at least qualitatively. In that case, the mass of thig the only limiting finite-size factor. The first term in the
avalanche must scale as~Iw 8, such that the critical expo- above equation accounts for all avalanches that fit inside the
nent of the distribution of avalanche masseg~m~"  box and the second term for the ones that reach. jhedge,
obeys the identity and thus are prematurely terminated. The first integral
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FIG. 5. FSS plots for the exponents of 2D sandbox model. The  F|G. 6. Effective scaling exponents derived from stationary ava-
solid (dashedl lines are for continuougdiscrete height model. lanche distributions of sandbox systems. The stdidshed lines
are for continuougdiscrete height model.
scales asL{ 7272229z for Jarge L,. The second

term scales with the same power because the second integ{ghches. The reduced distributions suchPas |~ ™, follow

scales ag§ "+ #* 9’2 while the mass factor in front of it from the metadistribution from, e.g., summation over
scales asn~Iws~L{" "% The result and .
Figure 5 shows FSS approximates for theexponents.
(m)~ L§_U+2+22+2a)/2, (170 They are constructed as follows. Power-law-decaying objects
such asP,~1~" are almost always subject to crossover-
when compared to Eq14), yields the exponent identity scaling-type effects, i.e., subdominant additional power-law
terms. In the language of renormalization theory they origi-
o=2+2z+2a. (18  nate from so-called irrelevant scaling fields and also from

L ) . nonlinear scaling field effects. This is well documented in
The validity of these exponent identities goes well beyondygilibrium critical phenomena, but most recent nonequilib-

our KPZ-type unloading sandbox. For example, the EW-typ&j,m scaling studies ignore this systematic effect, e.g., by
directed avalanche models by Paczuski and Ba_@Q]eand simply making a log-log plot ofP, as function ofl and
Klosteret al.[10] obey our Eq(11) when we substitute fa&  qraying a least-square-fitting-type straight line through the
anda the EW values£=2, @=1/2). The scaling exponents qa¢5 Such results show very little statistical noise, but can
of the original Dhar-Ramaswamy model can be described byjye rise to significant systematic errors. An example of the
the same equations with=2, «=0 as well. importance of corrections to scaling, was the large spread in
reported values of the stationary state roughness expenent
VI. NUMERICAL RESULTS FOR between various 2D KPZ-type-growth lattice models, which
2D SANDBOX AVALANCHES was resolved using a similar FSS analysis as presented here
4].
In the limit of largel the subdominant additional power-
law terms fade away. So, more weight must be put on the
largel part of the data than on the shorsection. However,

. . . . L1
The discussion of the preceding section leaves us WIIIL
two independent avalanche critical exponemtsandz. The
notation anticipates their identification with the scaling prop-

ertlelz_s of arough mtirf;\ce_m |r:cterface_ dgLOWtf(li-hThzfeS the it is a balancing act, because at lafigthe results become
scaling exponent of the Interface width andhe dynamic e since few avalanches reach that far.

critical exponent. Indeed, the interface width relates to the The total number of avalanches that reach beypscales
depth of the avalanche, and time to the length of the avay
lanche. We expect therefore thatandz take same values as
in 1+1D KPZ growth,a+z=2 anda=1/2.

We perform MC simulations on the sandbox avalanche
model and measure the avalanche metadistribution function Q|(Y)=f
P(l,w,8|Ly) [see Eq.(10)]. The sandbox is always taken Y
wide and deep enough such that the box lehgthcts as the
only FSS-type limiting factor. We average ovef'2ava- if the fraction of avalanches of lengtly scales asP,

©

A
Pi(hdl=— y~n*1, (19
7
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Lw Lw FIG. 8. Upper panel: The interface widtbquaredl for sandbox

surface(solid lineg and the same for an ensemble of fresh surface
(gashed linegs Lower panel: The difference between the two, with
LLX:B, 16, 32, 64, 128, and (from bottom up the box size in the
direction parallel to the driving edge.

FIG. 7. Effective scaling exponents derived from the distribu-
tions of first avalanches on fresh sandbox surface for the continuo
height model.

=Ay " (these are _only the leading termsVe construct & We will blame the correlated MC averaging feature for
dependent approximate for the exponentrom the ratio of  this, put it should be noted that avalanche distributions are

these two quantities, as intrinsically more sensitive to FSS effects than global inter-
face features. Many avalanches in the ensemble are small
n(y)= IP|(y). (20) compared to the global box size, and therefore sample and

Qi(y) average the KPZ scaling properties over much smaller

o lengths and shorter time scales than in a conventional global
The results are shown in Fig. 3We do the same for the jnterface roughness analysis at a comparable space-time box
other distributions.Plots such as this are intrinsically noisier gjze.
than conventional simple log-log type of plots of the distri-  One option is to push the run button on the computer and
butions, but they contain much more information. The varia-gut perform all corrections to FSS. Unfortunately, it would
statistical noise at larggcould be suppressed by running the gych |arge avalanches. It is doubtful that we would be able to
MC simulation longer. The simulation time is the only lim- get far enough in a reasonable time span. Moreover this ap-
iting factor. We used 2 avalanches and in that case, proach is intellectually unappealing. We prefer to search for

=512 is the optimal box size. . the origin of the deviations in the exponents.
In Fig. 6, we replot the same data in termsagfz, ando,

following Eg. (12) and using the same type of FSS analysis.
From the trend of the curves, we conclude that 0.46
+0.01,z=1.52+0.02, 0=4.43+0.05, andr,,= 1.48+0.01. The basic premise of our exponent identities is that ava-
This means that the exponent relatiofi8) and (18) are lanches are like any other fluctuation on & 1D KPZ-type
satisfied well within the statistical noise limitations, i.e., world sheet. Initially flat KPZ interfaceéthe sand surface
within a few percent. next to the driving edgeroughen in time(moving away
Surprisingly, the actual values farand«, although close, from the driving edggin such a manner that 8(PZ) timey
differ significantly from the exactly known+1D KPZ val-  the stationary state roughness is established within a length
ues a=1/2 andz=3/2. They deviate more than warranted scalel .~y This defines a so-called spreading cone. The
from statistical noise alone, and do not converge smoothly iavalanches are expected to follow the same pattern. How-
the KPZ values are correct. The approximatesdactually  ever, the avalanche cone seems to spread slightly faster,
undershoot the KPZ value= 1/2, and those for overshoot since the above avalanche value foslightly exceeds the
z=3/2. This systematic effect needs to be explained. It couldonventional KPZ value, and inside the avalanche the sur-
be that the exponents differ in a fundamental manner fronface seems to be slightly less rough, since the avalanche
the conventional KPZ values, or that we are looking at un-value for« is slightly smaller.
usually large and slow corrections to FSS. The smallness of In this and the following section we will establish that this
the deviations makes the latter more likédxcept when this is caused by correlations with previous avalanches. The new
happens to be a continuously varying exponents scenario avalanche does not run its course on a pristine fresh KPZ

VII. AVALANCHE-CORRELATED MC RUNS
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avalanche-correlated MC runs and the dashed line to conven-
tional uncorrelated MC averaging. The drawn lines have
bumps, i.e., the avalanche-correlated runs lead to rougher
interfaces at intermediate times.

This enhanced interface roughness is caused by the scars
left by earlier avalanches. The scars vanish at very lgrge
because avalanches reaching that far span the entire system
in the x direction. Figure 9 shows a typical configuration of
. scars. The lines are the traces of previous avalanches, i.e.,
& their edges. Latter avalanches wipe them out partially.

For finite system sizes, the stationary state interface width
follows from the plateaus at large times. There the
avalanche-correlated and uncorrelated MC curves coincide.

e i, A z; & 3 This is to be expected, because the large avalanches that span
) 3 A ‘f X SR the entire system(in the x direction at largey) occur at
s 3 » "f '» ‘%3}.%@% ',\t ; regular MC time inte.rvals, such that the largeart of the
DASSIREL AR g?‘.f».zi.,zﬁ ¢»~}%§M\‘«g¥ 22 surface(i.e., the stationary state of the growth progeiss

. . . completely refreshed periodically and therefore sampled ef-
FIG. 9. A typical configuration of the scars on the Sa”dboxfectively like in uncorrelated MC runs. As a result, the
created by the avalanches. The driving edge is located at the bono%ughness exponent, defined by Eq(8), is the same for the
of the graph while avalanches propagate upward inytHer t) both cases '
direction. The system sizes atg=256 andL.,=512. Most avalanches do not extend into that laygeart of the
_ ~ surface. They terminate in the scarred part of the surface.
interface world sheet but on an aged one scarred by previougherefore, we define an alternative roughness expomént

avalanches. associated with the scaling of the bumps, in terms of the
There are two obvious tests to address the effects of thesaaximized width

scars. The first one is to determine the avalanche distribu-

tions for only the first avalanche on a fresh KPZ world sheet W* =maW(L, ,y)~ Lo 1)
(the initial condition, i.e., to refresh the entire surface com- © X
pletely after each avalanche. The results are shown in Fig. 7.

The first avalanches likely follow normal KPZ exponers: more relevant for the avalanche scaling properties. Note that
converges now smoothly towards- 3/2; while the FSS ap-  for uncorrelated MC runsg* = a, since the interface width
proximates fore, although still too small, start to turn to- jncreases monotonically in time.

wardsa=1/2 and do not cross that value anymore. It should The conventional method for measuring the expon@nt

be noted that the FSS corrections are expected to be largefyolves the slope at times<LZ, and thus is sensitive to the
and that the data is noisier than in Fig. 6, because althouglglumps inW as well. The results are shown in Fig. 10. Com-
we ran the same number of avalarjche%lx,Zhe fraction of  pared to those in Fig. 4, they clearly converge less smoothly,
large avalanches is smaller, leading to smaller and noisigfith larger corrections to scaling and we should wonder if

amplitudes in the power-law tails of the distributions. they converge to the conventional exact KPZ values
The second test of the role of the scars is to measure the /o andg=1/3, at all.

global interface roughness for avalanche-type correlated MC |, the lower panel of Fig. 8 we platW? as function of
runs instead of completely refreshing MC runs. The uppefime, the difference between the squared widths of
panel of Fig. 8 shows the global interface widhff as func-  ayalanched-correlated MC rufthe drawn lines in the upper
tion of time for several,’s. The drawn lines correspond to pane) and completely uncorrelated MC rurithe dashed
lines in the upper pangl For infinite system sizeAW?

* B scales ad W2~ y* with an exponent that numerically is very
0.8 ————— 035 ——— close tos=1/3. Since the width itself scales ¥ ~y?3, it
- . L 4 follows that the bumps in the width curves are a transient
045 - ] FSS effect.

0.3 B This settles our basic issue at the numerical level; the
\ s 4 avalanche-correlated nature of the MC runs does not change
041= T N 1 the interface scaling exponents, but only gives rise to slow

Yooopeenpeed 025 T L ] corrections to FSS. In the following two sections, we will
identify these corrections to scaling with the scars on the
surface left behind by previous avalanches.

FIG. 10. Finite-size approximates of the scaling exponents for We start this analysis here by casting the deviations into
stationary surface of sandbgar correlated MC runs for the inter- the framework of corrections to scaling from a so-called ir-
face model with «* defined by Eq.(21) and 8 by Eq. (7). The  relevant operator in the sense of renormalization theory. Let
solid (dashedlcurves are for the continuoudiscrete height model. O¢{X) be the irrelevant operator andbe its scaling field.

y
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This amounts to presuming that the avalanche correlation
between MC runs can be represented effectively by adding to
the KPZ Langevin equationi5), a termuOg{x). We will
have to determine below ho@.(x) is related to the density

of scars on the interface space-time world sheet left by pre-
vious avalanches. According to scaling theory, the presence
of such a term to the Langevin equation leads to corrections
to scaling in the interface width as

W2(Ly,y,u)=b%*W?(b~ 1L, b~ 2%y,b¥s), (22
i.e., in the infinite-size limitL,—o°, to
W2 (y,u) =y?*2s(yYs"u), (23)
and by expanding the scaling functi®while assuming that
Y<<0, such thau=0 is a stable fixed point, and the argu-

mentyYsc'’?u is a small parameter, to FIG. 11. Traces of stable sand surface over 256 avalanches for
1D sandbox model with,=256. The system is driven from the left

W2(y,u)=y?¥7S(0)+yYsc2uS (0)+---]. (24)  aty=0.

The critical exponenyg, of this irrelevant scaling field must Without loss of generality we can set=1 (measure all
take the valug/s= — « to account for theSW?~y*® correc- lengths in terms oB). These identities are satisfied exactly,
tions in the interface width we found above. Moreover, theand the exponents are the same for uncorrelated and

operator must scale as avalanche-correlated runs. From the interface dynamics per-
- spective, a single directed random walker, the diffusion equa-
Osd X)~ b~ "se (25  tion character of the dynamics implies that2a=2. The

. - ) . ) ) values of all the other exponents follow from this, and are
with critical dimensionxs.=z, since the KPZ equatiofb),  consistent with their values from the avalanche perspective.
implies that the terma Os(x) anddh/dt must scale alike. In  There, we are dealing with the statistics of merging random
identity of this mysterious operat@s;, starting with the 1D to the number of avalanches of a lengigqual or larger than

version of the model. y in the ensemble of MC runs. The density of the walkers
decays ap(y)~y Y?[15], such that the distribution of ava-
VIII. SURFACE ROUNDING IN THE 1D lanche lengths obeys the form

UNLOADING SANDBOX

The 1D version of the unloading sandbox shows the same P(l)=
type of differences between uncorrelated and avalanche-
type-correlated MC runs as the 2D version. We determined
numerically the difference between the interface width forand therefore that;=3/2. The depth of the avalanche fol-
avalanche-correlated and uncorrelated MC runs, and founidws from the maximum separation between two subsequent
that it diverges as a power la®V?~y'2 with an exponent walkers, and scales ad~1Y2 i.e., a/z=1/2. The mass
that is again(like in 2D) half the size of that foM?~y  scales asn~15~1%2 i.e., (a+2)/z=3/2 andt,,=4/3.

IR
av”(y)L. -9 (29

itself. According to the corrections to scaling formali§24), This can be compared directly with the exponents of other
the scaling dimension dDg. must therefore be equal ta, 1D sandpile models, e.g., with results by Paczuski and
=z, just as in 2D. Boettcher{16] on the so-called Oslo sandpile model, where

The underlying interface dynamics becomes a zeror=r,~1.55 andD=(a+2)/z~2.23.
dimensional growth model, i.e., a simple random walk in the Let us turn our attention now to the central issue, the
h direction with a nonzero drift velocity to account for the difference between uncorrelated versus avalanche-correlated
net tilt of the surface. The exponents of the various avaMC runs. Adding a term such agO to the diffusion equa-
lanche distribution functions must obey the same type otion of motion creates a correction to the drift velocity of the
relations as in Sec. V: random walk. This suggests that we can identify the geomet-
ric meaning ofOq. directly by studying the deviations of the
oc—a o—Z o slope near the driving edge of the surface from its asymptotic
nT=T e T T T 20 Vae.
The average surface slope does not show any deviations
and (near the driving edgerom s./2 when we run the dynamics
as a conventional random walk, which amounts to “com-
o=+ 2a. (27) pletely refreshing” the surface after each MC raumcorre-
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lated MC run$. The avalanche-correlated runs do show a X

rounding of the surface near the driving edge, L1 g T
s(y)=Ay “+3sc. (29 1

The numerical results for the exponent yieder 0.98+ 0.03. 1 —

This confirms our corrections to scaling picture, because it

predicts thatx,.=z from the interface width since=xXs./z 0.6 0 o1 o2 0 : ol . L 02

andz=2 for random walks. 1y ' 1y '

This rounding originates from the distribution of termina-
tion points of the avalanches. A new random walk starts be- FIG. 12. Scaling exponent for boundary correction to the local
low the previous one and propagates until it meets the preslope of fresh 2D sandbox surfacer, in the interface language,
vious trajectory and terminates. The avalanche is the spadeansient growth rate from a flat interface;(y) —sy() ~y "/, and
between the trajectory of that new random walk and the alits COffeCtifin due to the iterated avalanche process:s(y)

ready existent surface. The amount of rounding of the slope Si(Y)~y™ "
near the driving edge is proportional to the distributjg(y)

of merging points on the surface. These merging points rep- Pi(y)
resent the scars left from previous avalanches. Each random py)=—"—7, (31)
walker by itself does not contribute to the rounding, i.e., on f P(1dl

average each has a constant sleg@. However, every new
walk lies below the previous surface, such that down stream
from every avalanche end point the surface is systematicallgndPi(1)~1"" yields
lower than beyond it. This upward bias across the avalanche
merging points(by an amount, e.gs./2, on an average, in .
the discreten version of our modelgives rise to the surface p(y)= a1y (32
rounding and yields that the latter is proportionalptgy).

The entire process and the set of subsequent stable sa
surfaces(Fig. 11) is therefore equivalent to a system of
merging random walkers obeying the rute-r A—A. That

Wother words, the surface curvature scales\as-y*sc/?
with Xs.=2z, In agreement with the above results. Interest-

. ) . . ingly, this result is independent of the actual value of the
type of dynamics has received extensive attention recentlgca‘lingl exponent, provided thatr;>1, which has to be true

and its various scaling properties are known exafil§|. for P, to be normalizable
There is little doubt that our 1D unloading sandbox is exactly Inlconclusion in 1D We identified the crossover scaling

soluble, using absorbing-wall-type random walk .mathemat'operator with the density of avalanche end points. These rep-
ics[17]. However, we will refrain from pursuing this path in

this paper resent indeed the scars on the surface, the memory of previ-

The critical dimension 004~ p(y) can be estimate(for ous avalanches.
intuition building purposesas follows. After adding a term
uOg. to the KPZ equation we should also write down an  IX. A/ALANCHE ROUNDING NEAR THE DRIVING
equation of motion foOg itself, to close the equations. The EDGE IN 2D
latter is not trivial, because the scars on the surfgce build up As in the 1D model, the surface slope is modified by the
slowly in time, such that that the equation of motion @y, . S
o . iterated avalanche process. However, unlike in 1D, the aver-
is highly nonlocal. On the other hand, the linear nature of the

e 2. X : . age slope near the edge is not constant already in conven-
diffusion equation allows one to be somewhat frivolous W'thtional interface dynamicévhere the entire surface is bein
the order in which averages are takéwithout losing the y g

essential physics, nor even the correct critical exponents refreshed during each MC ririThe surface slope is related
physICs, b to the growth rate of the underlying interface, and the round-

Let pi(y) be the end-point distribution aftéravalanches g of the slope near the driving edge represents the transient
(MC time steps During the last MC time step, one ava-

lanche runs through the system. It refreshes the entire surface
before its termination poing=17, such thajpj at sitey does

not change if the avalanche terminates befgrg;(y)=1 if

it terminates at; and p;(y) =0 if it extends beyond:

old
Surface

apily) _ N
5 Py pt(y)fy Pi(1)dl (30

FIG. 13. Two possible cases at a boundary of an avalanche
with P(I) the probability that the avalanche terminates atcluster (the shaded arga(a) avalanche expandgb) avalanche
distancel from the driving edge. The stationary state end-shrinks. The local slopes along the arrow marks is reduced)in
point profile therefore takes the form while increased ir(b).
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growth rate of the KPZ interface from the initial configura- Isi(y)
tion, e.g., a flat one: F =[A(6) = A(OR) ]+ Wi(Y)[s(y) —si(y)].

.y 36
S(y)=vo+cy~ (33 (39

The first term on the right hand side represents the creation
with y playing the role of time and the subscriptienoting  of the two new avalanche edges, and the second term repre-
that the entire surface is refreshed. By direct numerical simusents the refreshed surface inside the new avalanche. Note

lation of uncorrelated interface dynamics, we fiRg=0.7  that gs;(y)/dt=0 when this latest avalanche does not reach
(the left panel of Fig. 1@ This is consistent with conven- gjicey, and that this is automatically taken care of because in

tional KPZ scaling and power counting that cased, = 6g=0 and A(0)=0, while wi(y)=0 for y
>17. In the stationary state, after averaging over all possible
s~h/y~y¥?z t—y=2B (34  avalanches, Eq36) leads to
suggestinge;= 2/3. Wi (Y)[si(y) —si(Y)]=A(6) —A(OR). 37

We evaluate the surface slope profig/) in avalanche-

correlated dynamics MC runs, in terms of the difference withN€xt, ~we — perform an  heuristic ~ coarse-graining
respect to the uncorrelated case renormalization-type transformation. At large length scales,

the average anglé remains small, such that the right hand

side can approximated as
As(y)=S(y) —s(y) ~y*. (35 PP

awz(y)
ay

The FSS analysis for the exponentthe right panel of Fig. A(6 ) —A(Or)=ab, — bg=a (39)
12) yields k=1.05+0.07. This is in agreement withs.=z

and k= x¢./z implied by the corrections to scaling formalism Finally

(24). bad to treat the KPZ height fluctuations deep inside the bulk

Inside the bulk of an avalanche the interface is.fully ré-of an avalanche and those near its edge as deco(giéehst
freshed, and scales as in uncorrelated KPZ dynamics. At thﬁ1 lowest ordey such that

avalanche boundaries, the slope of the surface is biased up-

wards, because of the merging with previous MC runs 9

(which are on average shifted upwards by an amep#2L , As(y)=s(y)—si(y)=a—In[wi(y)]. (39
each time an avalanche is triggeretihis means that thas %

is proportional to the density of scars in the surface. In 1D
the scars are pointlike objects, the end points of the av

we presume that in the stationary state it is not too

This yieldsAs(y) ~y !, exactly the power-law decay we are

lanches; but in 2D the avalanche boundaries are line object!20King for, and consistent with all the above numerical re-
This nonscalar aspect makes that most line-segment contr?4/ts- . R
butions, when integrated along the boundaries of an ava- The only requirement for the latter is that(y)~y ¢
lanche, cancel out against each other. decays as a power law. Again, like in E®2) for 1D, the

To be more precises(y) represents only the component value the critical exponerg does not mattemvi(y) is equal
of the slope in they direction, and the magnitude of those to the average avalanche width in sligaveraged over all
jumps depends on the local angl¢he boundary makes with avalanches. It is reasonable to expect, and we confirmed nu-
the y axis. This is an odd functionA(6)=—A(—6), as  Mmerically, that this quantity scales with the same exponent as
illustrated in Fig. 13. The slope change is negative when théhe average width of all avalanches longer tlyane., as
avalanche opens up and positive when it narrows down. The
latter also implies thah (8) has opposite sign for the left and fw
right boundary of each avalanche. Notice that, while in the
lattice modeld takes only two discrete values, it renormal-
izes to a continuous variable at larger length scales. which yields&=1/3.

Let us estimate the Change in surface SIOpe due to these We are now ready to represent the crossover Sca“ng op-
scars in the same spirit as we did successfully in 1D. CongratorO.(x) in terms of the scars on the surface. Consider
sider one specific surface, and &(y) be the surface slope time slicey, O{x)=0 when no scar line runs through site
in a slice of the surface at distangdrom the driving edge, and otherwise is proportional to the angle the scar line makes
averaged over all, aftert avalanchesMC timet). The last  with respect to they axis. However, the sign also flips de-
avalanche changes this as follows. kgf(y’) be the width  pending on whether this represents a left or right boundary of
of this avalanche, which terminatesyat |7, in slicey’. The  the original avalanche. The latter can be denoted by an arrow
inside area of the avalanche is completely refreshed andlong the avalanche scar line. Alternatively, we can associate
therefore has the same average slggg) as in ordinary an age fieldy(x,y) to the entire surface, representing the age
KPZ dynamics(totally refreshed subsequent world sheets of the surface segmentsow many MC time steps ago sixe
This leads to the following equation of motion: was updateqd

w(D)P(hdl~yYz=n+1 (40)
y
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éy-Vg

with éy a unit vector in they direction. The denominator
arises because the magnitude of the age jump across the s

line |[Vg| does not play a role.

X. SUMMARY

carT

PHYSICAL REVIEW B6, 011306 (2002

lanches. It required a careful study, combining numerical and
analytical tools, presented in the second half of this paper, to
establish that these scars give rise only to larger than usual
corrections to scaling and not to fundamentally different val-
ues of the global roughness scaling exponerdad «.

he effect of the scars can be represented by introducing
an additional age field(x,y) to the height variableb(x,y),

that keeps track of how many MC runs ago siigy( par-
ticipated in an avalanche. This age-field couples into the

In this paper, we studied a directed avalanche model inkKPZ equation(5) as an additional term of the formOx.

spired by the unloading of a sandbox by means of a sIowI);r

he operatorOg. is proportional to the angle a scar makes

lowering wall, and the wish to setup an avalanche dynami¢Vith respect to the time axis, and can be expressed in terms
rule belonging to the same universality class as KPZ-typ®f the age field as shown in E¢11). We establish that the
interface growth. The 2D sand surface represents the worlgPUpling of this age field to the KPZ equation is irrelevant in

sheet of the ¥ 1D growing interface.

the sense of renormalization theory, both numerically and by

The scaling exponents of the avalanche distributions ar¥/iting down approximate equations of motion faOs.
directly related to the dynamical and stationary state rough] he scaling fieldi renormalizes with exponent= —a and

ness exponentsand« of KPZ growth in 1+ 1D [Eq. (11)].

Og. scales with critical dimensiorg:= —z.

However, we encounter one crucial difference. From the ava- Ve believe that the results of our work presented here can
lanche perspective, the conventional uncorrelated MC runB€ generalized to most “Markovian™ avalanche dynamic sys-
correspond to completely refreshing the surface, i.e., an ed€ms with local row-by-row-type toppling rules, and that this
semble average over all possible initial conditions, without'S & promising route to improve our understanding of the
ever running an avalanche. From the KPZ perspective, th&c@ling properties of avalanche dynamics in general.
avalanche dynamics represents an unusual MC ensemble av-

eraging procedure where subsequent interface world sheets
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