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Mean-field theory of a plastic network of integrate-and-fire neurons

Chun-Chung Chen and David Jasnow
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
(Received 25 June 2009; revised manuscript received 13 November 2009; published 13 January 2010)

We consider a noise-driven network of integrate-and-fire neurons. The network evolves as result of the
activities of the neurons following spike-timing-dependent plasticity rules. We apply a self-consistent mean-
field theory to the system to obtain the mean activity level for the system as a function of the mean synaptic
weight, which predicts a first-order transition and hysteresis between a noise-dominated regime and a regime
of persistent neural activity. Assuming Poisson firing statistics for the neurons, the plasticity dynamics of a
synapse under the influence of the mean-field environment can be mapped to the dynamics of an asymmetric
random walk in synaptic-weight space. Using a master equation for small steps, we predict a narrow distribu-
tion of synaptic weights that scales with the square root of the plasticity rate for the stationary state of the
system given plausible physiological parameter values describing neural transmission and plasticity. The de-
pendence of the distribution on the synaptic weight of the mean-field environment allows us to determine the
mean synaptic weight self-consistently. The effect of fluctuations in the total synaptic conductance and plas-
ticity step sizes are also considered. Such fluctuations result in a smoothing of the first-order transition for low
number of afferent synapses per neuron and a broadening of the synaptic-weight distribution, respectively.
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I. INTRODUCTION

The brains of living animals are perhaps the most com-
plex organs one can find. These are networks of neurons
formed through the connecting synapses, and their proper
functioning is crucial to survival. Theoretical studies of the
dynamics of neural networks have contributed to our under-
standing of how these networks might function [1,2]. Recent
progress in the study of synaptic plasticity is opening up new
opportunities for understanding how these networks can
form [3-5]. One of the most important aspects of a func-
tional neural network is that the strength of its connections
can change in response to the history of its activities, that is,
it can learn from experience [6-9]. Among the theories of
neural learning, the best known, Hebbian theory, states that
when a neuron partakes in the firing of another neuron, its
ability of doing so increases [10]. An oversimplified version
of the theory states that “cells that fire together, wire to-
gether” which is generally adequate for rate-based views of
neurons [11]. However, the actual activities of neurons are
described by “spikes,” that is, action potentials that are pro-
duced when the state of a neuron meets certain criteria, for
example, when its membrane potential reaches a threshold
value [12]. It was discovered that the exact timing of these
spikes plays a great role in determining the synaptic plastic-
ity, adding an element of causation to the correlation require-
ment of the learning process. That is, the presynaptic neuron
must fire before the postsynaptic neuron for the former to
actually take part in firing the latter. In fact, it was discovered
that a sharp change from potentiation to depression of the
synaptic efficacy can occur as the firing time of the postsyn-
aptic neuron precedes that of the presynaptic one [4,5,13,14].

An important feature of Hebbian learning is the presence
of positive feedback. That is, the stronger a synapse is, the
more likely that it will be potentiated. Often in simulated
plastic networks, this presents a possibility of runaway syn-
aptic weights, which are often curbed through the introduc-
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tion of cutoffs or other devices. In some schemes, the poten-
tiation of a synapse is suspended when its weight exceeds a
preset cutoff value [15-18]. While such cutoffs might be
justified by physiological limitations of the cells, in simula-
tion studies they often result in a pileup of synaptic weights
distributed near the cutoffs that is not observed in real bio-
logical neural networks [15,16,19-22]. Runaways or pileups
can often be mitigated by softening the cutoff [11,18,23].
Alternatively, it has been proposed from experimental obser-
vations that the potentiation and depression processes could
be asymmetric, such that potentiation is an additive process
to the current synaptic weight while depression is a multipli-
cative process. Such a mechanism was shown to produce a
unimodal distribution of synaptic weights free of pileups
among the many afferent synapses of a single neuron when
the inputs are driven by Poisson spiking sources [22].
Besides viewing brains microscopically as networks of
neurons as discussed above, efforts aimed at understanding
the structure and function of a living brain also include stud-
ies at the macroscopic scale, for example, of the interactions
between different anatomical regions or even of the role
played by the entirety of the brain as a vital organ [10,24].
The contrast of the two scales is very analogous to the study
of condensed-matter systems, which has faced similar chal-
lenges of bridging our understanding of the microscopic with
our observation of the macroscopic. Among various tools
employed by theorists studying condensed-matter systems,
mean-field theory has been proven valuable in that it often
allows one to obtain a quick grasp of what macroscopic
states of the systems can be expected from the set of micro-
scopic mechanisms they follow [25]. While it is well under-
stood that mean-field theories could fail to predict correct
scaling behavior of systems in critical states, where fluctua-
tions and long-range correlations are important, they gener-
ally are adequate (and often the first step in a systematic
procedure) in qualitatively describing the system in stable
phases, where fluctuations are of limited range, and useful in
revealing the structure of the phase spaces of the systems.
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The latter is especially desirable for biological systems
where large numbers of empirical parameters and, conse-
quently, vast phase spaces are often involved in microscopic
models of the systems.

In the current study, we consider a network of integrate-
and-fire neurons [26] driven by Poisson noise of fixed fre-
quency for all neurons. The interaction between the neurons
is taken to follow the neural transmission model proposed by
Tsodyks, Uziel, and Markram [27] (the TUM model), which
can account for the saturation effect of neural transmitter and
the short-term depression of synaptic conductance. While our
approach can handle alternative choices, the synaptic
weights between the neurons are allowed to evolve following
the spike-timing-dependent plasticity rules proposed by Bi
and co-workers [22,28]. A mean-field theory is used to de-
termine the self-consistent average firing rate of the neurons.
The noise-driven firings dominate the small synaptic-weight
regime, while self-sustaining firing activity is triggered in the
large synaptic-weight regime. As the mean synaptic weight
of the network is varied, the mean-field theory predicts a
hysteresis for the transition between regimes of noise domi-
nance and self-sustaining activity. Within the mean-field en-
vironment, assuming the neurons are firing with Poisson sta-
tistics, the dynamics of a single synapse can be viewed as a
random walk process in synaptic-weight space. Under the
small-jump assumption, we use the master equation to cal-
culate the drift and diffusion coefficient for the random walk.
The resulting Fokker-Planck equation allows us to predict
the stationary synaptic-weight distribution of the process and
close the self-consistency with the requirement that the sta-
tionary distribution reproduces the mean synaptic weight
characterizing the mean-field environment. For the plasticity
rules and ranges of the parameters we considered, the synap-
tic weights form a narrow distribution having a width pro-
portional to square root of the plasticity rate. Finally, we
extend the mean-field approximation to include the effect of
fluctuations in the synaptic conductance as well as the varia-
tions in jump sizes in the random walk of synaptic weights.

Of course, despite our mention of brains of living crea-
tures in our introduction, the current analysis cannot hope to
address issues of dynamics involved in such a venue for
myriad reasons. Among others, here we imagine homoge-
neous, stationary networks, which is surely not the case in
the brain. However, there are continuing, revealing experi-
ments on cultured neural networks with perhaps several hun-
dred individual neurons in which all-to-all coupling is not an
unreasonable approximation or starting point [28-32]. This
class of experiments represents an important step and will
continue to provide important insights into the behavior of
more complicated networks. Our aims are to improve the
understanding of the stationary, statistical properties of such
plastic network and ultimately address dynamical behavior
during formation. Furthermore, cultured networks are on a
scale approachable by the modeling, numerical, and analytic
work such as that presented here. By analogy with a variety
of familiar statistical mechanical models, sufficiently large
homogeneous networks, in which the number of “neighbors”
of a particular element grows proportionally to the number of
elements in the thermodynamic limit, are expected to be well
described by the type of mean-field analysis employed in this
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study (see, e.g., chapter 3 of [33]). In a separate publication
we will present results of extensive numerical simulations on
integrate-and-fire (and other representative neuron model)
networks, the results of which can be put in the proper per-
spective via comparison with the calculations presented here
and with results of in vitro experiments.

The remainder of this paper is laid out as follows. In Sec.
II, we describe the model of the plastic network, which con-
sists of (i) the dynamics of the membrane potential, (ii) the
model of synaptic transmission, and (iii) the plasticity rules.
In Sec. III, we apply the mean-field method to a network
with fixed synaptic weights and determine the state of the
system through response functions deduced from the dynam-
ics of neuron and synaptic transmission under a given mean
synaptic weight. In Sec. IV, we map synaptic plasticity to a
random walk process in synaptic-weight space, determine
the stationary synaptic-weight distribution, and close the
self-consistency in the mean synaptic weight of the network.
In Sec. V, we expand the mean-field theory to include the
consideration of fluctuations in total synaptic current of a
neuron and fluctuations in step sizes of synaptic weight
changes. Finally, we summarize and conclude in Sec. VI.

II. MODEL

We consider a noise-driven plastic network of integrate-
and-fire neurons. The neurons are coupled using the TUM
model of neural transmission [27,34] described below. The
noise is modeled by randomly forced firing of the neurons
following Poisson statistics at a fixed frequency.

A. Integrate-and-fire neuron

The integrate-and-fire model is a single-compartment neu-
ron model where the state of a neuron i is described by a
membrane potential V;. The dynamics of the membrane po-
tential follows the differential equation of a leaky integrator
[35]

de_ = VO_ Vi+RmIsym (1)
t

where 7, is the leak time for the membrane charge, which is
given by the product of the total membrane capacitance C,,
and resistance R,,, while Vj, is the resting potential when the
neuron is in the quiescent state. The total synaptic current
Iy, is a sum over each afferent synapse j for the neuron i,

%yn E le _]l Ji Vi)’ (2)

where, for the synapse connecting neuron j to i, w;; is the
synaptic weight, R;; is the reversal potential for the ion
channels, and Y;; is the fraction of active transmitters. The
dimensionless synaptlc weight w;; can be interpreted as the
maximum synaptic conductance achieved when Y;;=1,
measured in units of the membrane conductance R_ of the
neuron. In the current study, we consider cases in which
there is only one type of ion channel at all synapses so that
they share the same reversal potential R;;=R. In these
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cases, the difference of membrane potential from the reversal
potential can be factored out and Eq. (1) becomes
dv;

T, =

Vo= Vi+Gi(R-V)), 3
dt 0 it 1( 1) ()

where

G, = E wiY (4)

is the total synaptic conductance (in units of R, ).

In this model, a neuron fires when its membrane potential
reaches a threshold value, Vy,. Then, its membrane potential
drops immediately to a reset value, V.. The action potential
of the integrate-and-fire model is assumed to be instanta-
neous and is not modeled explicitly. The spike train produced
by the neuron i is defined as the function

Si=2> ot =tin), (5)
n
where ¢, , is the time when the neuron i fires for the nth time.

B. Tsodyks-Uziel-Markram model of neural transmission

The fractions Y;; of the active transmitters are described
by the TUM model [27] of neural transmission, where the
transmitters are distributed in three states: “active,” with the
fraction Y; “inactive,” with the fraction Z; and ‘“ready-to-
release,” with the fraction X. For a synapse with presynaptic
neuron j and postsynaptic neuron i, these fractions follow the
dynamics [27]

dX; Z;
paeloV A S _.L_uijj“
dt TR
dy; Y.
i —L+uS]XJ,,
dt )
dZy Yy Z ©

dt ) TR

where 7 is the decay time of active transmitters to the inac-
tive state, 7 is the recovery time for the inactive transmitters
to the ready-to-release state, and u is the fraction of ready-
to-release transmitters that is released to the active state by
each presynaptic spike. With the conservation rule

Xj,i+Yj,i+Zj,[=1’ (7)

there are two independent variables per synapse. Since the
multiplying factor of the spike train §; in the dynamics of X ;
depends on Xj; itself, which is discontinuous when there is a
o function in §; due to a spike at given time 7, we must
specify how the value of X;; should be evaluated at the time
of the spike. Consistent with the TUM dynamics, the values
of the factors multiplying §; at the discontinuities are to be
evaluated immediately before the discontinuities.

The TUM model is very flexible. Since the variable Y
represents a fraction in the TUM model, its value can satu-
rate. As a result, an increase in the firing of the presynaptic
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neuron can only produce a less-than-linear increase in the
active transmitters. However, a linearity of active transmit-
ters on the firing rate can be recovered in the u—0 limit
maintaining the average level of the synaptic conductance by
keeping the product w; ju constant. Additionally, the presence
of the inactive state, Z, mimics the short-term depression of
neural transmission, where repeated firings of the presynap-
tic neuron over a short period of time will reduce the maxi-
mum value attainable by Y temporarily through depositing
the transmitters into the inactive state before their recovery.
Finally, manipulating 7/ 7 can reproduce a model with a
single saturating “species” Y (see below).

Since dynamics (6) depends only on the spike train of the
presynaptic neuron j, without external disturbance all the
efferent synapses of a neuron should have the same values of
transmitter fractions. Thus, we can drop the subscript i from
dynamics (6) and regard these fractions as the properties of
the presynaptic neuron j. Such simplification is not appli-
cable for transmitter dynamics that depend, for example, on
the postsynaptic neuron, that have synaptic-weight-
dependent parameters, or synapse-dependent noise. These
complications are not considered here.

C. Noise

While the integrate-and-fire and TUM dynamics are both
deterministic, we model the stochasticity of the network with
additional noise-driven firing events following Poisson sta-
tistics with the frequency Ay for each neuron. The noise-
driven firings are treated the same way as threshold firings,
that is, the membrane potentials are brought instantaneously
to the reset value V, and the firing times are included in spike
trains (5) of transmitter dynamics (6).

D. Spike-timing-dependent plasticity

It has been observed experimentally that the change in
synaptic efficacy depends on the precise timing between the
presynaptic and postsynaptic spikes [13]. When a presynap-
tic spike precedes a postsynaptic spike, following van Ros-
sum et al. [22], we take the synapse to be potentiated by an
amount proportional to e where At is the timing differ-
ence between the two spikes and 7, is the size of the poten-
tiation time window. Similarly when a postsynaptic spike
precedes a presynaptic spike, the synapse is taken to be de-
pressed by an amount proportional to e/ where 75 is the
size of the depression time window [22,28]. One reasonable
mechanism for the cell to determine the interval between
spikes is to imagine the cell evaluates the concentration of a
decaying chemical species released at the first spike [36].
Following such a mechanism, the synaptic changes proposed
in [22] can be produced for the synaptic weight w;; by the
dynamical equation

d
—ZZL AAS, - rw; B,S;, (8)

where A is the potentiation constant for causal spike pairs, r
is the depression factor for anticausal spike pairs, while As
and Bs are the amplitudes of such (assumed) chemical spe-
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cies controlling the magnitude of potentiation and depres-
sion. These amplitudes are assumed to follow the dynamics
[36]

do. .
dt T

o

where different choices of the spike increments f, lead to
different schemes of spike pairing. For example, f,=1 leads
to “all-to-all” pairing of presynaptic and postsynaptic spikes
while f,=1-0 leads to “nearest-neighbor” pairing of spikes
[36]. We note the stochastic differential equations in Egs. (8)
and (9) above should follow Itd’s interpretation [37]. That is,
when the value of o jumps because of a spike in S, the value
of f,, which determines the size of the jump, is evaluated
immediately before the jump. The effects of the two choices
of f, are identical when spike pairs are far and apart but
differ when possible spike pairs are close compared with the
decay time 7, of the respective timing chemicals. With the
choice f,=1, the values of A or B can increase linearly with
the frequency of spikes without limit. On the other hand, for
the choice f,=1-0, the value of o will never exceed 1, its
value immediately after a single spike. It is reasonable to
expect, in a realistic setting, that the values of A or B will
increase with increasing spike rates, but they should saturate
and be limited to some physiologically determined maximum
values with further increase in spike rates. Assuming spike
increments f,=u,(1—o) with u,<1 can produce this behav-
ior. The parameter u,, can be interpreted as the mean fraction
of chemicals released at each presynaptic firing relative to
the amount that can possibly be produced without o exceed-
ing its maximum value of 1.

Additionally, certain effects of fatigue can also be ex-
pected in synaptic plasticity [38]. That is, while o (=A or B)
can saturate when the spike rate increases, the saturation
value itself can be expected to decrease when a high spiking
rate is sustained for an extended period of time [27,34]. Such
effect can be modeled by assuming an additional inactive
state I,,, which takes up a fraction of o that can be produced
for each spike, so that the increment becomes f,=u,(1-0o
—1,). One can assume simple dynamics for /,,, given by

dl, o 1,
dt Tio TRo

so that I, is fed by the presence of o with the rate 7';; and
decays with a recovery time constant 7g,. One expects that
the rate of ¢’s feeding into the inactive state [first term on the
right of Eq. (10)] should be less than the rate of its own
decay [first term on the right of Eq. (9)], so we require the
condition 7;,= 7.

The considerations outlined above conspire to produce a
variant of the TUM model similar to what we have used for
the neural transmitters apart from possibly different values of
the constants involved. In the current simulation study of
plastic integrate-and-fire networks, we retain the qualitative
structure of the system but simplify by assuming 7,=7,
=Tp, Tpy="Tg, and u,=u so that the same values of Y; calcu-
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lated for the neural transmitter in the TUM model can be
used as surrogates for A; and B; in the synaptic plasticity
yielding
Wi Ay S —rw ¥S (11)
dr R TWiil -
These simplifications reduce the amount of computation re-
quired without sacrificing qualitative and semiquantitative
analysis.
To summarize, our system of equations reduces to Egs.
(3)—(7) and (11). The “control parameter” in subsequent
analysis will turn out to be

W*

S | B

; (12)

which, when fixed, leaves the depression factor r as an over-
all control of rate of plasticity.

II1. MEAN-FIELD APPROXIMATION
A. Single neuron response function

To formulate a mean-field approximation, we assume that
the firing rates of the neurons are given by the same mean-

field value X and that all the synapses have the same synaptic
weight w. The total synaptic conductance G of a singled-out
postsynaptic neuron is a function of time and jumps when-
ever there is a firing of a presynaptic neuron and subse-
quently decays with the time constant 7,, as in Eq. (3). Con-
sider the limit of large number K of afferent synapses per
neuron while keeping the product wK constant. Then, the

total frequency of all presynaptic firings is KX —o. In this
limit, the jump sizes of G, being proportional to w, approach

0 while the rate of making the jumps diverges. For fixed A
and wK, we may thus ignore fluctuations and consider G as a
constant over time.

For a constant total synaptic conductance G, the firing
frequency of an integrate-and-fire neuron can be solved ex-
actly by setting the initial membrane potential to V(0)=V,,
the reset value, and finding the time 7 it takes to reach the
firing threshold V(7)=Vy,. The solution of Eq. (3) is given by

V(G) -V,
- _ T ln( ~( ) th) i (13)
G+1 V(G) _ Vr
when V(G) = V,,, where
‘7(G) _ Vo+GR (14)
G+l

is the resting value for the membrane potential under the

constant conductance G. For V< Vin, We have =00 since the
neuron never fires. In addition to firings due to crossing the
threshold, the period 7 can be cut short by Poisson noise of
frequency Ay as the membrane potential sweeps from V, to
V- Given Poisson statistics, the average interval 7 between
all firings (either threshold-crossing or noise-driven) is given
by
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FIG. 1. (Color online) Firing frequency A(G) of an integrate-
and-fire neuron under constant total synaptic conductance G given
by Eq. (16). Also shown are mean-field active synaptic transmitter
fractions Y(\) (for K=31, w=0.01) driven by a Poisson spike train
of frequency N\ given by Eq. (17). The dashed line represents a
numerically calculated correction to Y(\) due to the periodic firing
of the neuron when driven by constant total synaptic conductance
G. The parameters are listed in Table I. The arrow indicates that the
curve shifts to the right for increasing w. The dot-dashed line is the
neuron response function numerically calculated for the Morris-
Lecar model used in [34] with a slightly higher background current.

7= f di\yte ™™ + ’Tf dihye ™ = N3 (1 = e,
0 T

(15)

and the firing frequency \ of the neurons is given by

~ Ay, /GH1 ] -1
7(G) - Vm) v w6

x«n:le—(~
V(G) -V,

for V=V,,, and by A=\ otherwise. (See Fig. 1.) The func-
tion A\(G) obtained in Eq. (16) characterizes the mean-field
response of the integrate-and-fire network model in the cur-
rent study [45], but similar functions can be obtained analyti-
cally or numerically for different neuron models such as the
Hodgkin-Huxley, Morris-Lecar, or FitzHugh-Nagumo mod-
els (see, e.g., [11,39]). (An example of a numerically calcu-
lated response function for a Morris-Lecar neuron is included
in Fig. 1.)

B. Synapse response function

To obtain the mean-field active transmitter fraction ¥ of a
neuron, we further approximate the firing of the neurons as
having Poisson statistics described by the mean-field firing
rate N [17]. Keeping Y and Z as the independent variables for
the TUM model, stochastic dynamics (6) can be averaged
over an ensemble of Poisson spike trains with (S)=N\ for the
presynaptic neuron to yield the functions

PHYSICAL REVIEW E 81, 011907 (2010)
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FIG. 2. (Color online) Mean-field firing frequency \ as a func-
tion of mean-field synaptic weight w determined by the intersec-
tions of neuron response function and synapse response function as
plotted in Fig. 1 for K=31. The two arrows show the region of
hysteresis where two stable fixed points, the noise-dominating
lower fixed point and the persistently active upper fixed point, co-
exist. The symbols will be used in connection with Figs. 4 and 7.

UTp\

YON) = (17)

I +u(7p+ )N
and Z(\)=(7gx/ 7p)Y(\) for the average active (Y) and inac-
tive (Z) transmitter fractions. The function Y(\) characterizes
the mean-field response of a synapse [45]. The value of the
active transmitter fraction for a mean-field network can be
obtained through the relation

Y=Y\). (18)

C. Self-consistency condition

The total synaptic conductance of a neuron in a mean-
field network with K afferent synapses per neuron is given
by

G=KwY=KwY(\), (19)

which can be substituted into Eq. (16) to complete the self-
consistency condition closing the set of Egs. (16), (17), and
(19). The curve for Eq. (19) is also shown in Fig. 1, and the
intersections with the neuron response function \(G) repre-

sent fixed points of the network activities, \, given the mean-

field synaptic weight w. The function A(w) is shown in Fig.
2. The mean-field theory predicts a first-order phase transi-
tion and hysteresis as the mean-field synaptic weight w is
varied. At low synaptic weight, the activities of the network
are dominated by the external noise. As the synaptic weight
is increased, a pair of new fixed points emerge at higher
firing frequencies. Among the three fixed points, only the
upper and the (noise-dominated) lower fixed points are
stable. As the synaptic weight is increased further, the lower
fixed point eventually is annihilated by the unstable (middle)
fixed point leaving only the upper fixed point representing
higher firing activities.
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FIG. 3. (Color online) We consider the dynamics of a single
synapse of synaptic weight w in a mean-field environment.

IV. RANDOM WALK IN SYNAPTIC-WEIGHT SPACE

Given the mean-field firing frequency A for a fixed mean
synaptic weight w, motivated by the Bethe-Peierls approxi-
mation [25], we consider a single synapse within such a
mean-field environment as illustrated in Fig. 3. The time de-
pendence of the synaptic weight is governed by Eq. (8) and
the simplification embodied in Eq. (11). With the assumption
of Poisson spike trains produced by both the presynaptic and
postsynaptic neurons, the dynamics of the synaptic weight
maps onto an asymmetric random walk (jump process) in w
space with w-dependent jump rates and jump sizes [37].
From Egs. (8) and (11), the synaptic weight increases by
AA,=AY, whenever the postsynaptic neuron fires and de-
creases by rwB;=rwY; whenever the presynaptic neuron
fires. As the presynaptic neuron is driven by the mean-field
environment, its firing frequency A\, is given by the mean-

field firing frequency A. On the other hand, the postsynaptic
neuron is partly driven by the synapse in question (Fig. 3),
thus, its firing frequency A\ is w dependent. As calculated
from the neuron response function A(G), this firing rate is
given by

N =A[(K - D)w+w]Y), (20)

where, even though the synaptic weight w is singled out from
among the K afferent synapses, all of the presynaptic neu-
rons are from the mean-field environment (see Fig. 3) with

the active transmitter fraction Y. As for the step sizes, since
A, depends on the firing of the presynaptic neuron, its value

is given by the mean-field value Y. On the other hand, B, is
determined by the firing of postsynaptic neuron; therefore, its
value is also w dependent and given by B;=Y(\,). As men-
tioned earlier, we set A=B=Y to reduce the number of vari-
ables and computational intensiveness. In general, the system
can have different characteristic functions A(\) and B(\) for
potentiation and depression.

A. Mean-field synaptic weight

While the “random walk” of synaptic weight is under the
influence of the mean-field environment, a self-consistency
condition requires the average value of the singled-out syn-
aptic weight from the random walk process to be the same as
the assumed mean-field value w. Assuming a normalized sta-
tionary synaptic-weight distribution from the random walk,
P (w), which is w dependent, the self-consistency requires
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FIG. 4. (Color online) Average synaptic weight from the simu-
lation of a single synapse between two Poisson neurons as shown
schematically in Fig. 3 versus the mean-field synaptic weight w for
w*=0.02. The mean-field firing frequencies A used in the single
synapse simulations are given by Fig. 2, and the results for both the
upper and lower fixed points (marked by corresponding symbols in
Fig. 2) are plotted.

W=<W>EwaPS(W;W)dW. (21)
0

The stationary synaptic-weight distribution, following sto-
chastic dynamics (11), cannot be easily determined even with
the assumption of Poisson spike trains. However, straightfor-
ward numerical simulations of a system of a single synapse
and two Poisson neurons can be used to obtain the stationary
distribution P(w;w) to any reasonable precision. Figure 4
shows typical plots of the average synaptic weight from the
random walk process as a function of the mean-field synaptic
weight w. Notice that the symbols are lower (higher) than the
dashed line on the left (right) meaning that a deviation of w
from w* results in a smaller deviation of (w) from w*. Hence,
the w=w" is a stable solution for condition (21).

B. Fokker-Planck equation

Since synaptic-weight dynamics (8) [or Eq. (11)] only de-
pends on the current weight of the synapse (a Markov pro-
cess), we can approximate the dynamics of the weight distri-
bution for small jumps with a master equation ignoring
higher-order moments in the Kramers-Moyal expansion (see,
e.g., [37]). A Fokker-Planck equation formalism has been
applied to populations of neurons in previous studies of the
distributions in membrane potential [40-42]. Here we apply
this type of formalism to a population of plastic synapses
similar to the work by Rubin et al. [17].

Equation (8) or its simplification [Eq. (11)] can be viewed
as a stochastic equation governing the jumps in synaptic-
weight space upon arrival of spikes and which allows us to
calculate the drift

(WA = W), 0)=w
v=lm———

=AY\ —rwY(N )N, (22)
At—0 At

where \| is given by Eq. (20). One also has for the diffusion
coefficient (arising from the second moment of the synaptic
weight changes)
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TABLE 1. Values of parameters used in calculations.

Integrate and fire TUM model

Resting potential V: =55 mV Decay time 7p: 20 ms
Leak time 7,,: 20 ms

Firing threshold Vy,: =54 mV
Reset potential V;: =80 mV

Reversal potential R: 0 mV

Recovery time 7z: 200 ms
Release fraction u: 0.5
Noise frequency \y: 1 Hz
Plasticity rate r: 0.01

1. <[W(At) - W]2>w(())=w
— lim
2A[~>O At

1 - 1 _
= EAZYZ)\I + 5r2w2[Y(>\1)]2>\. (23)

D=

The dynamics of the synaptic-weight distribution P(w) is
then approximated for small jumps by the Fokker-Planck
equation
dP(w)
Jat

o L popi]+ POl (24
ow ow

when higher-order moments in the Kramers-Moyal expan-

sion are ignored. Consider the stationary state P(w) of the

weight distribution. Fokker-Planck equation (24) can be in-

tegrated once to yield

J
vP(w)=—[DP,(w)]+ const, (25)
ow
which is formally solved by
P(w) o - o VD0, (26)
' D

The peak positions of distribution (26), w, (if they exist) are
given by v(W)=D’'(w). Since diffusion coefficient (23) is one
order higher in the plasticity rate r compared to drift (22),
under the small-jump approximation, the peak positions are
given approximately by the zeros of v. When w=w*=A/r,
we can verify that drift (22) is zero and thus the distribution
P(w) should peak at w=w. We can expand v and D in pow-
ers of w—w and keep only the first-order terms. The expo-
nent of Eq. (26) becomes

*

w ’ * 2

w—w' —(w-w

f dw'— = ( — ) + const, (27)
rYw*? 2rYw*?

which results in a Gaussian distribution for Py(w). The dis-
tribution is very narrow; the width of the distribution is given
by

Aw = \/Ew*, (28)

which corresponds to only about 1% of w* for the parameters
we have considered in Table I above. Simulations for a fully
connected network using the same model and parameters
yield a width about five times larger but with the same scal-
ing power in r in the noise-dominated regime [43]. We will
return to this point below.
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C. Stability analysis within mean-field theory

The condition v(w)=0 for the peak position w of the
synaptic-weight distribution gives rise to

AYX, = MY(N)N, (29)

where \;=\,;(¥). Using the mean-field response function
(17) for the synapses, we get

1+ + TN
=y et T (30)
1 + M(TD + TR))\

It is straightforward to verify that when the mean-field syn-
aptic strength is given by w=w", the peak position is given
by w=w, providing a self-consistent solution. To determine
the stability of the solution, we start with a small deviation
6w of w from w* and find the resultant deviation 6w of the
peak position w from w. Assuming the neuron response func-
tion A(G) is smooth around the mean-field total conductance

G=Kw?Y, the firing frequency of the postsynaptic neuron can
be expanded

X =~ N+\(G)oWY, (31)

where N\ is the first derivative of the mean-field response
function A(G). The mean-field response function Y(\) for the
active transmitter can also be expanded as

Y(\y) = Y[1+ Y (NN (G)ow]. (32)

The condition v(W)=0 results in

_|Y _

w—w*=d6w= w*)\’(G)[j - Y’()\):| -1 (éw. (33)
A

For the w=w" solution to be stable, &W and éw should be of
opposite signs so that the perturbation can be damped. Thus,
we need

w*w(é)[g—y’o?)] <1, (34)
X

or, for given total synaptic conductance G,

— -1
_ _ Y _
w* <wp(G) = )\’(G)|:: - Y’()\):| . (35)
N
For the integrate-and-fire model we have considered, in the
noise-dominated regime A=\ and N\’ =0, so condition (35)

is satisfied. In the large G limit, the firing frequency \ in-
creases linearly with G while the transmitter fraction Y for
the TUM model saturates leading to a linear w;(C_}). For self-
consistency, the membrane conductance is given by G

=Kw*Y for the w=w* solution, and it is thus left to the
constant K (representing the number of connections per neu-
ron) to determine whether the solution will remain stable.
For the range of the parameters we have considered, the
solution w=w* remains stable for large w* as long as K> 1.
However, it is straightforward to verify from Eq. (35) that
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w=w" cannot remain a stable solution at large w* for models
in which, for example, A\(G) saturates for large G or Y(\)
increases linearly (when it no longer represents a fraction)
with N\ for large \. Under these situations, this analysis sug-
gests that one may find runaways or pileups of the synaptic
weights in the system.

V. CORRECTION TO THE MEAN-FIELD THEORY

In the mean-field considerations, we characterized all neu-
rons with a single firing frequency X, all synapses with a

constant active transmitter fraction Y, and the “network” by a
constant strength w. This is an oversimplification even within
the mean-field approach. We retain the characterization of
the environment by a single w. However, a neuron within a
network experiences, instead of a constant total synaptic con-
ductance, the bombardment of synaptic conductance pulses
issuing from the spike trains of corresponding presynaptic
neurons. This shot-noise-like fluctuation is most prominent
when the amplitude of the pulses is comparable with the
mean of the total synaptic conductance. When the number K
of afferent synapses per neuron and the total frequency Ay
of presynaptic events are small, the mean level of the total
synaptic conductance is comparable with the amplitude of
each individual pulse. Consequently, the assumption of a
constant total synaptic conductance will be inadequate.

In the mean-field approximation above, we also assumed
that the neurons fire following Poisson statistics. However,
when integrate-and-fire neurons are driven by a constant to-
tal synaptic conductance (as in the limit of large K and \ o),
the time between threshold crossings will also be constant,
and the resulting spike trains of the neuron will be periodic.
Combined with the Poisson external noise, the intervals be-
tween firings will follow a Poisson distribution only up to the
period of threshold crossings, where there will be a & func-
tion representing the periodic firings. Nonetheless, Poisson
and periodic firings result in the same mean level of active
transmitter fraction in the limits of low and high firing fre-
quencies, while the corrections in the intermediate frequency
regime remain insignificant for the TUM model that we con-
sidered (see the dashed line in Fig. 1). We will thus retain the
assumption of Poisson firing for the following discussion.

A. Effect of fluctuation in total synaptic conductance

Apart from making an analytically tractable system, a
mean-field approach does not necessarily require approxi-
mating the total synaptic conductance as a constant in time.
Here, we consider the total synaptic conductance G as a
time-dependent function and model the dynamics of G ap-
proximately with

dG G

Tt VAT (36)
where Si 1S @ Poisson spike train with the frequency Ay
accounting for any presynaptic events, and the jump size J is
a constant modeling the increase in the total synaptic con-
ductance due to each spike in Sy,. (In the spirit of mean-
field theory, we simplify the dynamics of G by assuming a
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FIG. 5. (Color online) Extended space of Fig. 1 when the fluc-
tuation in synaptic conductance G is considered (represented by the
jump size J). The extended neuron response function (38), the syn-
apse response function Y(N)=G/(Kw), and relation (39) determine
the stationary states of a mean-field network (marked by a circle on
the surfaces).

constant jump size J. In general, the jump size of the total
synaptic conductance for each presynaptic event is a random
variable depending on the active transmitter fraction of the
firing presynaptic neuron.) The average total synaptic con-

ductance G is related to frequency N, and jump size J by

G= Nota T s (37)

and the ensemble of G(¢) can be characterized by two inde-
pendent parameters from the set Ny, J, and G. Here, we
choose G and J to characterize the ensemble and the result-

ing ensemble-averaged firing frequency Ao, (G,J) of the
postsynaptic neuron is a generalization of the response func-
tion A\(G) considered in Sec. IIL.

To evaluate \,,(G,J) for given values of G and J, we
simulate dynamics (36) with a Poisson spike train of fre-
quency A inferred from Eq. (37) to obtain the time-
dependent total synaptic conductance G(¢), which we use in
the dynamics of membrane potential (3); the measured aver-
age firing frequency of the postsynaptic neuron gives us the
value of A\, (G,J). The process is repeated to generate the
surface

A =Xou(G.J) (38)

as plotted in Fig. 5; compare to the line representing \(G) as
plotted in Fig. 1. The jump size J is an estimator of the
fluctuations in the total synaptic conductance G(¢), and in the

J=0 limit, the two-parameter response function A, (G,\)
reduces to the single parameter response function \,,(G,0)
=\(G).

As we are considering a mean-field network with K affer-
ent synapses per neuron, the total frequency of presynaptic

events for a postsynaptic neuron is given by A=K\,
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FIG. 6. (Color online) Numerical mean-field phase diagram (fir-
ing frequency A versus synaptic weight w) for various numbers K
(as labeled in legend) of afferent synapses per neuron under fluctu-
ating total synaptic conductance (drawn lines) compared with the
analytical results when the total synaptic conductance G=G is as-
sumed to be constant (dashed line).

where \ is the mean-field firing frequency for any neuron.
Combining with relation (37), this gives us the condition

=\, (39)

as plotted in Fig. 5, forming a planar surface in the
logarithmic-scale G—J—\ space.

Whatever the value of J, the synaptic response function
Y(\) determines the mean total synaptic conductance G

=KwY(\) when \ is given for the mean-field network. The
inverse

A=Y (m , (40)

also plotted in Fig. 5 with Eq. (19), represents the convex
surface invariant along the J axis. Along with surfaces (38)
and (39), the intersections of the three surfaces determine the
fixed points of the system (marked with a circle in Fig. 5).

While the neuron response function \o,(G,J) is evaluated
numerically, we determine the fixed points in the mean-field
firing frequency numerically from the intersections of the
three surfaces in Fig. 5, varying the mean synaptic weight w
for a given number of afferent synapses K per neuron. The
resulting phase diagram is plotted in Fig. 6 for various K
values. The hysteresis vanishes at K=K-= 10, and the tran-
sition from noise dominance to persistent activity becomes
continuous. In our case, the fluctuation comes from the fact
that the number of afferent synapses is finite. We expect that,
in a real biological network, other sources of fluctuations can
play a similar role to smooth out the first-order phase transi-
tion separating a noise-dominated regime from persistent ac-
tivity as predicted by the analytical mean-field theory of Sec.
III.
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B. Correction to synaptic-weight distribution

Besides smoothing out the first-order phase transition in a
mean-field network, the fluctuation in total synaptic conduc-
tance can also influence the stationary distribution of synap-
tic weights. We have noted that the width of the synaptic-
weight distribution predicted by the simplest mean-field
approach (about 1% of w*) is too small in comparison with
results of simulations on fully connected plastic integrate-
and-fire networks (about 5% of w* [43]). One of the approxi-
mations we made in arriving at Eq. (27) is to replace the
time-dependent Y (or the fractions A and B that it represents)
with its average value. Such an approximation can be im-
proved by considering the second moment of Y in deriving
the diffusion coefficient D in Eq. (23). We expect the fluc-
tuation in Y to be important when the mean-field firing fre-
quency is low. In this limit the time-dependent Y(z) is a sum
of pulses

Y(1) =u, 6(t —t,)e =1, (41)

where 6(z) is a step function with #(t=0)=1 and 6(:<0)
=0, {r;} are the firing times of the neuron, and mean (Y)
=utp\. When the overlap of the pulses can be ignored, for
example, in the noise-dominated regime, the mean square of
Y is given by (Y?)=u?1,\/2, which should replace the
squares of Y in diffusion coefficient (23). This leads to a
width of the synaptic-weight distribution of

| (Y2 —
Aw = rgw* =\ur/2w* (42)
Y

instead of Eq. (28). For the values of the parameters we have
considered, this represents about 5% of w* and is similar to
the simulation results from a fully connected network [43] in
the noise-dominated regime. We have verified the analytical
result (42) through numerical simulations of a random walk
process for the synaptic weight described by dynamics (11).
As shown in Fig. 7, the scaling in plasticity rate r continues
to be described by Aw ~r® with @=1/2 in all cases, while
the amplitudes match well for the noise-dominated fixed
point but show small deviations when the system is persis-
tently active. In general, we can expect fluctuations to play
an important role in determining the synaptic-weight distri-
bution of a plastic network. Here we have shown that a sig-
nificant correction can be accounted for by considering the
fluctuation in the neural transmission for a limited system of
a single synapse between two neurons with Poisson spike
trains. Even without an analytical solution, such a system can
be easily simulated to any desirable accuracy to obtain the
stationary synaptic-weight distribution as well as the average
synaptic weight (w), which provides self-consistency condi-
tion (21) for the mean-field theory.

Here we have preserved the basic structure of the mean-
field approach under the additional consideration of fluctua-
tions in synaptic conductance by extending the neuron and
synapse response functions to functions of two variables.
The additional degree of freedom, the average jump size J of

011907-9



CHUN-CHUNG CHEN AND DAVID JASNOW

|
N

()

weight distribution width Aw
=
(%)

-4 NP -
1077 1072
plasticity rate 7

o]

FIG. 7. (Color online) Numerical results (symbols) for the width
of synaptic-weight distribution, Aw, as a function of plasticity rate,
r, in a limited system of a single synapse between two neurons with
Poisson spike trains following dynamics (11) and operating at three
of the fixed points predicted by the mean-field theory (as marked by
corresponding symbols in Fig. 2). The results are compared with the
analytical predictions (lines of corresponding colors) from Eq. (42)
(drawn lines) and Eq. (28) (dashed line).

active transmitter fractions, was fixed by condition (39) com-
ing from the nature of such a fluctuation and does not enter
the final result (42) explicitly.

VI. SUMMARY AND CONCLUSION

Models of plastic neural networks can generally be bro-
ken down into three parts: (i) the modeling of the dynamics
of the neuron state (represented by the membrane potential),
(ii) the modeling of synaptic transmission, and (iii) the plas-
ticity rules. We have applied a mean-field theory that follows
this basic structure. In the mean-field framework of the cur-
rent study, we reduce the dynamics of the neuron state to a
response function A(G) representing the mean firing fre-
quency of a neuron when it is driven by a constant total
synaptic conductance G. Similarly, the dynamics of synaptic
transmission is also reduced to a characteristic response
function Y(\) representing the mean fraction of active neural
transmitter given the Poisson firing frequency N of the pr-
esynaptic neuron. With the mean-field synaptic weight w of a
network with K afferent synapses per neuron and the mean-

field firing frequency A, the average total synaptic conduc-

tance is given by G=KwY(\). This allows one to plot the
synapse response function Y(\) along with the neuron re-
sponse function A(G) (see Fig. 1) to determine self-

consistently the mean-field firing frequency \ as a function
of w and K.

The mean-field firing frequency A and the mean synaptic
weight w characterize the mean-field network completely.
We then use this mean-field network as an environment and
investigate the dynamics of spike-timing-dependent plastic-
ity (8) of a single synapse in such an environment. Assuming
Poisson statistics for the spike trains, dynamics (8) can be
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viewed as describing a type of random walk in synaptic-
weight space, where the frequency of potentiation and the
jump size of depression are dependent on the weight of this
synapse. The distribution of synaptic weights can be calcu-
lated numerically for the stationary state using straightfor-
ward simulations of the single synapse system. Under the
approximation of small jumps, the stationary distribution can
be calculated analytically from the Fokker-Planck equation
arising from the master equation. The self-consistency of the
mean-field approach is completed by requiring that the mean
of the synaptic-weight distribution (w) reproduces the mean-
field synaptic weight w of the environment.

We have considered a network of integrate-and-fire neu-
rons [35] coupled through synapses with TUM dynamics
[27] within the mean-field framework outlined above. We
chose integrate-and-fire neurons for their simplicity and wide
use. We chose the TUM model of neural transmission for its
features and flexibility as noted above. On the simplest level
for a static network, our mean-field approach amounts to
finding intersects of the neuron response function and syn-
apse response function, each of which can be calculated
separately from the particular neuron model and synapse
model selected. Our choice of model happens to allow us to
find analytical forms of the mean-field response functions for
the neurons and synapses and predict a first-order phase tran-
sition from a noise-dominated regime to a regime of persis-
tent activity as the mean-field synaptic weight is increased.
(However, see below.) In general, these response functions
can be computed numerically in a straightforward fashion for
a variety of neuron and synapse models regardless of the
number of empirical parameters they might carry. In Fig. 1,
we showed the results of such calculation for the Morris-
Lecar neuron used in [34] which was defined by more than
20 parameters.

For the dynamics of the synaptic weight, for specificity,
we follow the spike-timing-dependent plasticity rules pro-
posed by van Rossum er al. [22], with additive potentiation
and multiplicative depression. The Fokker-Planck analysis of
the corresponding random walk process predicts a narrow
Gaussian distribution for the synaptic weight centered
around w*, control parameter (12) entering the plasticity
rules. [See, e.g., Eq. (11).] We apply a small perturbation to
the {(w)=w=w" solution, analyze its stability analytically and
numerically, and find it to be stable for any number of affer-
ent synapses per neuron K=1 for the model and parameter
ranges we considered. However, the analytical expression
(35) for the stability, which is generic for any neuron and
synapse response functions, also suggests that for models in
which the neuron firing rate \(G) saturates for large conduc-
tance G (for example, models with a refractory period for the
firing of neurons) or where the synapse response function
Y(\) does not saturate for large N (for example, when the
effect of presynaptic firings is additive and Y no longer rep-
resents a fraction), the fixed point w=w* cannot remain
stable for large w*. It is then possible to have runaway or
pileup in the resulting synaptic-weight distribution.

For a network of finite K and low overall frequency Ay
of presynaptic events, the “shot noise” due to the discrete
nature of presynaptic spikes is not negligible, and one at least
needs to expand the description of the mean-field response of
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a neuron to include temporal fluctuations. We have done this

approximately via a two-variable function, e.g., Aoy (G,J),
where J, representing fluctuations, describes the size of the
jumps in a neuron’s total synaptic conductance for each pr-
esynaptic event. We evaluate this two-variable response
function numerically for a single neuron, modeling its total
synaptic conductance with a simple stochastic jump-and-
decay process (36). The results suggest the disappearance of
the first-order transition when the number, K, of afferent syn-
apses per neuron is less than a critical value K-=~10. In
realistic situations fluctuations can be expected to smear out
the first-order transition. When a corresponding fluctuation is
considered for the variable Y governing jump sizes in plas-
ticity rules (11), the Fokker-Planck approach predicts a
broader Gaussian distribution which has a width similar to
the observed width in full network simulations [43]. The
results of extensive simulations on a fully connected plastic
network will be published elsewhere.

The inclusion of fluctuations at some level, such as within
our extended mean-field theory (see Sec. V), hints at a pos-
sible critical state of the system at the endpoint of a first-
order transition line in analogy with the vapor pressure curve
of a fluid, see, e.g., [25]. While criticality in neural ava-
lanches has been observed by Beggs and Plenz [31], within
the extended mean-field analysis employed in the current
study the system does not appear to organize into such a
critical state without a requisite tuning of the fluctuation-
amplitude and perhaps plasticity parameters, e.g., w*. This is
in contrast with the suggestion that such criticality should be
self-organized [31,44]. It thus will be of great interest to find
missing elements, possibly in the plasticity rules, that could
dynamically push the network close to a critical state. Along
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this direction, one can expect a variety of model candidates,
which can be easily subjected to the type of mean-field
scheme outlined in the current study to provide additional
qualitative and semiquantitative insights into their plausibil-
ity. We also note in passing that all-to-all network simula-
tions using the plasticity rules and neuron modeling de-
scribed in this paper have not revealed evidence for a self-
organized critical state. In that regard, sparse networks would
appear to be better suited, but mean-field analysis such as
presented here will mainly have only qualitative use. Our
simulations of integrate-and-fire and other neuronal networks
with the plasticity rules used here will be presented else-
where.

As noted in Sec. I, the current study cannot begin to ad-
dress how brains function or form. As a real brain is never
uniform or stationary, we do not expect the model systems
presented here to address or reproduce its dynamics. How-
ever, there are cultured networks consisting of hundreds of
neurons with virtually all-to-all interactions [28-32]. The
study of these networks in vitro is an important stepping
stone toward the understanding of more complicated net-
works. The dynamics of these cultured networks are on a
scale very much accessible to current neural network model-
ing, such as the one presented here, and simulation, as noted,
to be presented elsewhere.
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