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Event-driven simulations of a plastic, spiking neural network
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We consider a fully connected network of leaky integrate-and-fire neurons with spike-timing-dependent
plasticity. The plasticity is controlled by a parameter representing the expected weight of a synapse between
neurons that are firing randomly with the same mean frequency. For low values of the plasticity parameter, the
activities of the system are dominated by noise, while large values of the plasticity parameter lead to self-sustaining
activity in the network. We perform event-driven simulations on finite-size networks with up to 128 neurons to
find the stationary synaptic weight conformations for different values of the plasticity parameter. In both the
low- and high-activity regimes, the synaptic weights are narrowly distributed around the plasticity parameter
value consistent with the predictions of mean-field theory. However, the distribution broadens in the transition
region between the two regimes, representing emergent network structures. Using a pseudophysical approach for
visualization, we show that the emergent structures are of “path” or “hub” type, observed at different values of
the plasticity parameter in the transition region.
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I. INTRODUCTION

Neurons can form plastic networks through connecting
synapses with weights that are changed dynamically by the
neural activity in the form of neural spikes. It has been
established that the precise timing of these spikes determines
whether and how the synaptic weights will be increased
(potentiated) or decreased (depressed) [1–4]. With better
understanding of spike-timing-dependent plasticity (STDP),
it becomes increasingly important to find out its implications
on the underlying network structure and, consequently, on the
neural activity itself. Theoretical models of a plastic neural
network typically consist of three components: neural dynam-
ics, synaptic transmission, and network plasticity [5,6]. As has
been shown previously [6], a simple self-consistent mean-field
scheme can be constructed when these three ingredients of a
plastic neural network are given. Reducing the neural and
synaptic dynamics to a determination of response functions
characterizing a mean-field medium, the network plasticity
is left governed by one-dimensional random-walk dynamics.
Such a mean-field scheme was applied [6] to a network
of leaky integrate-and-fire neurons [7–9], coupled through
a jump-and-decay synaptic conductance dynamics [10], and
under STDP rules [2], controlled by a plasticity parameter
w� representing the expected value of synaptic weights when
firings of the neurons are purely driven by noise. While we do
not expect that there is a broad range of cell types with different
plasticity parameter values but otherwise similar physiological
characteristics, different values of w� can correspond to
different stages of a (quasistatically) growing and developing
network. The mean-field theory (MFT) predicts a first-order
phase transition and hysteresis from a low w� regime of
noise-driven activity to a high w� regime of self-sustaining
activity. It also predicts a narrow synaptic weight distribution
as long as the overall rate of change of synaptic strength is
low. In the current study, we perform intensive event-driven
simulations [11] on the same model network to compare with
the predictions of MFT; the simulations also reveal emergent

network dynamics and structures that are not captured by the
MFT.

In Sec. II that follows, we briefly describe the simulated
model of a plastic neural network, which was elaborated in
our MFT study [6]. We then present in Sec. III the method and
algorithm of the event-driven simulations used to explore the
dynamics of the model. The results of the simulations for static
uniform networks are reported in Sec. IV, where we present the
mean activity levels for networks of different sizes as functions
of synaptic input. These activity levels agree well with the MFT
predictions in the stable phases of low and high activity but
show a gradual increase in a transition region (w�

1 < w� < w�
2,

from the onset to the persistence of threshold firing events)
instead of the sharp first-order jump predicted by MFT. We
also analyze the sporadic patterns of self-sustaining threshold
firings in the transition region to identify two types of threshold
firing events. In Sec. V, we present simulation results with high
resolution in the plasticity parameter w� for a plastic network
with N = 32 neurons that has reached a stationary state of
plasticity. The change in the synaptic-weight conformation
of the network in the transition region manifests itself in
the synaptic-weight distribution, which is seen to broaden
twice, along with a bimodal elevation of the average firing
activity compared to that of a static network. To characterize
the emergent synaptic-weight structure of the network in
the transition region, we employ a pseudophysical approach
for visualization in Sec. VI to generate a two-dimensional
(2D) layout of the network. Such an approach reveals a path
or loop conformation near the lower end of the transition
region (w� ∼ w1) for network sizes up to N ≈ 32 and a hub
conformation near the high end (w� ∼ w2) for N ≈ 24 and
greater. We then conclude and summarize our findings in
Sec. VII.

II. MODEL

While our method is applicable to other combinations of
models of neurons, synapses, and plasticity, we follow the
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same choices made in our mean-field approach [6], which we
describe briefly below.

In the integrate-and-fire model for the neurons, the state of
a neuron i is described by a membrane potential Vi , which
follows the differential equation of a leaky integrator [12]

τm

dVi

dt
= V0 − Vi + Gi(R − Vi), (1)

where τm is the leak time for the membrane charge, V0 is the
resting potential when the neuron is in the quiescent state, and
R is the reversal potential for the ion channels on the synapses.
The total synaptic conductance Gi for the neuron is given by
the sum

Gi ≡
∑

j

wj,iYj (2)

over all presynaptic neurons, j . The synaptic weights wj,i

define the network, and the same active transmitter fraction Yj

is assumed for all efferent synapses of neuron j . In addition to
the continuous dynamics (1), a neuron fires when its membrane
potential reaches a threshold value, Vth. Then, its membrane
potential drops immediately to a reset value, Vr. The action
potential of the integrate-and-fire model is assumed to be
instantaneous and is not modeled explicitly. The spike train
produced by the neuron i is defined as the function

Si(t) ≡
∑

n

δ(t − ti,n), (3)

where ti,n is the time when the neuron i fires for the nth time.
The fraction Yj of the active transmitters is described by

the Tsodyks-Uziel-Markram (TUM) model [10] of neural
transmission, where the transmitters are distributed in three
states: “active,” with the fraction Y ; “inactive,” with the
fraction Z; and “ready-to-release,” with the fraction X. For
efferent synapses of a presynaptic neuron j , these fractions
follow the dynamics [10]

dXj

dt
= Zj

τR

− uSjXj ,

dYj

dt
= −Yj

τD

+ uSjXj , (4)

dZj

dt
= Yj

τD

− Zj

τR

,

where τD is the decay time of active transmitters to the inactive
state, τR is the recovery time for the inactive transmitters to
the ready-to-release state, and u is the fraction of ready-to-
release transmitters that is released to the active state by each
presynaptic spike. With the conservation rule

Xj + Yj + Zj = 1, (5)

there are two independent variables per presynaptic neuron.
Consistent with the TUM dynamics, the values of the factors
multiplying Sj at the discontinuities are to be evaluated
immediately before the discontinuities.

While the integrate-and-fire and TUM dynamics are both
deterministic, we model the stochasticity of the network
with additional noise-driven firing events following Poisson
statistics with the frequency λN for each neuron. The noise-
driven firings are treated the same way as threshold firings;

TABLE I. Values of parameters used in calculations.

Integrate and fire TUM model

Resting potential V0: −55 mV Decay time τD: 20 ms
Leak time τm: 20 ms Recovery time τR: 200 ms
Firing threshold Vth: −54 mV Release fraction u: 0.5
Reset potential Vr: −80 mV Noise frequency λN : 1 Hz
Reversal potential R: 0 mV Plasticity rate r: 0.01

that is, the membrane potentials are brought instantaneously
to the reset value Vr and the firing times are included in the
spike trains (3) of the transmitter dynamics (4).

To minimize the computational cost, the active transmitter
fractions Yj double as the exponentially decaying “window
functions” in our version of the plasticity rules suggested by
van Rossum et al. [2]. The synaptic weights are taken to follow
the dynamical equation

dwj,i

dt
= �YjSi − rwj,iYiSj , (6)

where � is the parameter for additive potentiation and r is
the parameter for multiplicative depression. We define the
plasticity parameter as the ratio

w� ≡ �

r
, (7)

which is equal to the expectation value of the synaptic weight
when we have the symmetry 〈YjSi〉 = 〈YiSj 〉, e.g., when Si

and Sj are both Poisson spike trains of the same frequency.
Fixing w� leaves the depression factor r as an overall control
parameter for the rate of plasticity.

It is common for a model of a biological system to carry a
large number of empirical parameters. Instead of exploring
all possible ranges of these parameters, we fix them with
physiologically plausible values that are commonly found
in the literature. Unless otherwise stated, the values of the
parameters are as listed in Table I.

III. SIMULATION METHOD

The disparity between the time scales of spiking activities
and neural plasticity presents a significant challenge to com-
puter simulations of plastic neural networks. Particularly for
STDP, where precise timing is crucial in determining synaptic
changes, we cannot alleviate the computation requirement
through use of larger integration time steps. However, for
continuous dynamics that can be solved analytically, one can
improve the efficiency of computation through an event-driven
approach similar to that described by Brette [9], which gives
machine precision timing for the spikes and requires a limited
amount of computation upon each spike production.

In the event-driven approach, instead of calculating the state
of the system for a fixed increment of time, one calculates the
time for the next discontinuous event. This approach is feasible
when the continuous dynamics of the system is solvable so
that the time for the next discontinuous event can be evaluated
efficiently. For the leaky integrate-and-fire model considered,
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an analytical form can be written down for the trajectory of
the normalized membrane potential [9]

vi ≡ Vi − V0

R − V0
= xex

[
E1(x) − E1(G) + v

GeG

]
, (8)

where E1 is the exponential integral function of the first kind,
x ≡ Ge−t/τm , and v = vi(0), G = Gi(0) are the initial states of
the neuron. For the TUM dynamics, the transmitter fractions
follow the trajectories

Yi = e−t/τDY,
(9)

Zi =
[
Z + τR

τR − τD

Y

]
e−t/τR − τR

τR − τD

Yi,

where Y = Yi(0) and Z = Zi(0) are their initial values. With
the trajectory (8), one can solve for the time of the next
threshold crossing Vi → Vth through, e.g., a root solver. The
computation time for a root solver to find the position of
the crossing depends only logarithmically on the precision
required, compared to the linear increase for the fixed-time-
step approach. Further improvement of the computational
efficiency can be achieved by, e.g., precomputing a lookup
table for the time-to-threshold crossing given the current state
of a neuron and interpolating when the desired value falls
between precomputed points. For the simulated network with
Poisson noise, the algorithm is as outlined below:

Step 1. For each neuron i in the system, calculate the time-
to-fire t ittf from the continuous, deterministic dynamics of the
model.

Step 2. Draw the time to its next noise-triggered firing t iN
from an exponential distribution with the expectation value
λ−1

N for each neuron i.
Step 3. Find the minimum of the times t ittf and t iN among

all neurons to be the time to the next discrete event �t of the
system.

Step 4. Advance the simulated clock by �t and update the
state of the system using Eqs. (8) and (9).

Step 5. Fire the selected neuron i by resetting its mem-
brane potential to Vi = VR and increasing the affected active
transmitter fraction Yi by u(1 − Yi − Zi).

Step 6. Repeat this process from step 1.
For the current model, the simulated dynamics boils down

to the evaluation of the time-to-fire tttf (V,G) given the initial
membrane potential V and total synaptic conductance G as
well as the evaluation of the trajectories (8) and (9). We note
that instead of the common approach of defining the model
with the set of differential equations (1) and (4), it is equally
valid and computationally preferable to define the continuous
dynamics of the model with the trajectories (8) and (9) for the
neurons and synapses.

IV. STATIC NETWORK

Before incorporating plasticity, we first perform event-
driven simulations on fully connected networks of up to 128
neurons with uniform, fixed synaptic weights w. This exercise
will prepare us for the inclusion of plasticity and also reveal
the emergence of “structure” in the network. The average
activity levels for different system sizes are shown in Fig. 1.
compared with predictions from MFT [6]. As expected, the

FIG. 1. (Color online) Mean activity level vs total synaptic input
(Kw) for fully connected uniform networks (node degree K =
N − 1) with static synaptic weight (w). Dashed lines are predictions
from mean-field theory without fluctuation corrections (long dashes)
and with the inclusion of shot-noise-like fluctuations (short dashes)
in total synaptic conductance for a network with K = 63 afferent
synapses per neuron.

average activity levels of the simulated network coincide with
mean-field predictions in the stable phases of low and high
activity. However, in the transition region between the two
phases, the activity levels from network simulations increase
continuously instead of exhibiting the jumps and hysteresis
predicted by mean-field theory. We note that the hysteresis in
MFT [6] comes about when there are two stable states in the
system: a quiet state with only noise-triggered firings that are
insufficient to ignite the entire system, and an active state in
which firings are system wide and self-sustaining. However,
for a finite-size network having sufficient fluctuations and
running for a sufficient time, the system can make transitions
between the two states, leading to a single-valued mean
activity level of the system showing no hysteresis. Comparing
networks of different sizes, the rise of the average firing
frequency in the transition region is steeper for larger networks
since fluctuations in the total synaptic conductance decrease
with an increase in the number of afferent synapses [6]
rendering mean-field theory a better approximation.

The firing pattern of the N = 64 network is shown in Fig. 2
for four different values of synaptic input Kw as marked in
Fig. 1. With computer simulations, we are able to distinguish
firings due to threshold crossings of the membrane potentials
(marked with dark vertical line segments) from noise-triggered
firings (marked with light vertical line segments). We can thus
define a system to be active when there is any neuron with a
membrane potential set to cross the firing threshold without
the help of further noise events. Operationally, this is when
the time-to-fire t ittf calculated in step 1 of the event-driven
algorithm outlined previously is finite for any of the neurons.
The switching between the quiet and active states of the
network are evident on the strips B and C. This leads to
clusters of threshold firings during which the system remains
active. In the specific model we considered, there are two
types of threshold firings clusters that can be identified from
the polygraphs. The first represents bursting, which are brief
clusters (up to a few hundred milliseconds) of threshold firings
of generally similar durations. These can be seen for all
threshold activities on strip B and some on strip C as marked
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FIG. 2. Firing polygraphs of the N = 64 network at four different
values of synaptic strength w labeled in Fig. 1. For each value,
only activities of 16 randomly chosen neurons are shown, with each
occupying 1/16 of the height of the corresponding strip. The light
and dark vertical line segments mark the firings due to noise and
threshold crossing, respectively. The time on each strip of recording
runs toward the left with a scale indicated by the 1 s time interval on
each strip. Symbols (� and ∗) mark clusters of threshold firings as
detailed in text.

by the symbol “�” in Fig. 2. The second type of threshold
firing activity is intermittently persisting activity, which can
last for seconds, are of a wider range of durations and are seen
in two time segments marked by the symbol “∗” on strip C of
Fig. 2. The two types of clusters of threshold firings can also
be identified from the duration distribution of self-sustained
threshold firings shown in Fig. 3. The distinction between
the two kinds of activities can be attributed to the short-term
depression caused by the inactive state of synaptic transmitters
in the TUM model: When threshold firings of the network
are just ignited after a quiet period, most transmitters are in
the ready-to-release state and activities can propagate easily
leading to a somewhat higher firing rate of the neurons in the
beginning. However, as most transmitters are deposited into
the inactive state during repeated firings, the firing frequency
is reduced. At the low-activity end of the transition region, the
reduction of firing frequency typically continues all the way
to a cessation of any threshold firings, leading to the short
bursting events of similar duration. Near the high-activity
end of the transition region, as the transmitters become
inactive, the reduced firing frequency can settle to a stable
value that can last for seconds before all threshold firings
stop. From the simulation results such as what are shown
in Fig. 3, the stopping of the threshold firings appears to
follow Poisson statistics; that is, it can be characterized by
a stopping rate τ−1. The stopping time or duration distribution
of sustained threshold firings decays exponentially for large
duration with the time constant τ that increases with w

and suggests a divergence at some w = wp. For the N = 32

FIG. 3. (Color online) Time-weighted duration distribution of
sustaining threshold firing activities. The system is considered
active when any of the neurons is set to cross the firing threshold
without further noise events. The duration is measured for each
episode of the system staying continuously active. The oscillations
in the distribution come from the periodic nature of persistent firing
activities. Values of the synaptic weight w̄ (0.014, dashed line and
0.021, solid line) correspond to the locations B and C, respectively,
in Figs. 1 and 2.

network, we estimate wp ≈ 0.0487 and that the “stopping-time
constant” diverges roughly with the scaling τ ∼ (wp − w)−2

as suggested in Fig. 4. We note that the scaling form of the
stopping time remains the same when we simplify the TUM
dynamics in our model by removing the inactive state (data not
included here), suggesting at least some degree of universality.
These results suggest that the divergence of the stopping-time
constant τ signals that the system enters the phase of truly
self-sustaining activity.

The Poisson statistics, as seen in the exponential tail of our
duration distribution for large durations is in contrast with the
critical avalanches observed by Beggs and Plenz in neocortical
slices [13]. Furthermore, instead of having avalanches with
a distribution of sizes, during the active periods (as seen in
Fig. 2) of our network, the threshold firings are generally
system wide. Nonetheless, the apparent power-law divergence
of the stopping time τ as the system enters the active
phase is suggestive of criticality for such a transition. In a

FIG. 4. (Color online) Scaling of stopping-time constant esti-
mated from the tail of active duration distribution in Fig. 3 for an
N = 32 static uniform network. The best estimate of wp = 0.0487
for the diverging point (center curve) is shown along with two slight
deviations. The dashed line is to show the estimated slope of −2 for
comparison.
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uniform system of constant synaptic weights as considered
here, the critical point would require a tuning of the synaptic
weights to their critical value w = wp. However, for a more
realistic model with a smooth distribution of local synaptic
weights, near the onset of a self-sustaining phase, a power-
law dependence of the stopping time could be a reasonable
expectation [14]. Alternatively, in a biological network, tuning
might result from functional necessity to have the system
operate near a critical point [15]. It is not unimaginable that the
power-law size distribution of avalanches in neocortical slices
might also be related to an underlying critical point, which
could correspond to the onset of, say, system-wide bursting
instead of self-sustaining activity. Such possibilities warrant
much further investigation that likely would require significant
changes to the network considered here (for example, making
it heterogeneous and not fully connected) that are beyond the
scope of the current study.

V. DYNAMIC (PLASTIC) NETWORK

For the current study, we focus on the stationary states of
the system under the plasticity dynamics. A uniform network
with synaptic weight wj,i = w� for all synapses is used as the
initial configuration, and simulations are conducted at each
data point for at least 231 ms (≈25 days) of simulated time
to reach the stationary state. We concentrate our calculations
on a fully connected network of N = 32 neurons with a high
resolution in the plasticity parameter w�. For each w�, all
measurements are averaged over an ensemble of 32 or more
independent runs of different random sequences. The results
of the calculations are summarized in Fig. 5, where we see that
the firing frequency of a stationary plastic network coincides
with that of a uniform static network (w = w� for all synapses)
in the low-activity, noise-dominated regime as well as in the
persistently active regime. In the transition region between
the noise-driven and self-sustaining regimes, the firing rate of
the network is enhanced by the plasticity, and while the
behavior is not universal, with TUM synapses the amount
of enhancement exhibits an interesting bimodal shape.

In the insets of Fig. 5, we show the synaptic weight
distribution, also averaged over the same ensemble, at each
marked point along the activity-plasticity curve. In the two
stable regimes, noise dominated and persistently active, the
synaptic weights have a Gaussian distribution with a narrow
width (within about 5% of w�) as predicted by MFT [6].
However, coincident with the bimodal enhancement of firing
frequency, the synaptic weight distribution of the stationary
plastic network shows dramatic changes in the transition region
along the activity-plasticity curve: Increasing the plasticity
parameter w� from the noise-dominated low-activity regime,
we see a discontinuous jump in the firing rate and sudden
broadening of the weight distribution with tiered side peaks at
w� ≈ 0.017. The enhanced firing and broadened distribution
ease off after the jump, until these features become insignif-
icant around w� = 0.04. At this point, with a slight increase
of w�, two disconnected side peaks pop out in the synaptic
weight distribution. However, such a splitting in the weight
distribution is only accompanied by a gradual enhancement
of average firing rate of the plastic network. The two side
peaks eventually merge back to the main peak with further

FIG. 5. (Color online) Activity-plasticity (parameter) plot for a
fully connected plastic network of N = 32 neurons compared with the
activity level of a static network of the same size with uniform weight
w = w�. The plastic network is allowed to reach a stationary state by
running for about 25 days of simulated time. All results are averaged
over an ensemble of 32 or more runs of different random sequences.
Insets of the plot show the normalized synaptic weight distributions
on a log-log scale with a range of 2 (4) decades on the horizontal
(vertical) axis at different points marked on the activity-plasticity
curve.

increases of w�. This eventually returns the network to a
uniform conformation with a narrow Gaussian synaptic-weight
distribution before the plasticity parameter reaches w� 	 0.1.

Instead of a simple increase of the Gaussian width, the
observed broadening of the synaptic-weight distribution in
the transition region just summarized (see Fig. 5) comes
with structured side peaks, which signify emergent network
conformations that we try to decipher and visualize with a
pseudophysical approach in Sec. VI. For the N = 32 and
smaller networks, we are able to obtain a stationary state from
the simulation run that is insensitive to the initial configuration
at each data point (value of w∗). However, we do see runaway
synaptic weights under the plasticity rules used for the N = 48
and N = 64 networks in narrow, isolated intervals at w� ≈
0.0268 and w� ≈ 0.0194, respectively, near the high-activity
end of the transition region before the runs (231ms, ∼25
days, of simulated time) are complete. For these instances, the
diverging synaptic weights and firing frequencies of the driven
neurons slow the simulation down to a near standstill, and we
cannot always maintain a stationary system as we vary the
plasticity parameter across the runaway point. We note that
such runaways are commonly seen in models with Hebbian
plasticity and are typically “cured” with cutoffs in the range
of synaptic weights [16–19]. We do not need such a device for
the N = 32 network results presented. For larger networks,
when we do see such “isolated” runaways, we regard them as
pathological [20,21] and exclude them from the ensembles.

VI. NETWORK “LAYOUT”

Characterizing the structure of nonuniform networks is
an active field of research [22–25]. Here we adopt a more
intuitive and visual approach to extract any emergent structures
of the stationary plastic network obtained above. Under our
model setup, such structures reside in the framework of a fully
connected network of uniform connectivity, represented by the
main peak in the synaptic weight distribution. In this section,
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we attempt to uncover the topological meaning of the side
peaks seen for the distribution in the transition region between
the two stable phases of the system.

In order to visualize the networks such that any emerging
features can be better revealed, we introduce a pseudophysical
system of fictitious interacting particles in two dimensions
representing the neurons, recognizing, of course, that the actual
all-to-all network is not strictly two dimensional. The nodes
(pseudoparticles) are imagined to be located on the plane,
confined to the region near an arbitrary origin by an isotropic
harmonic potential. The nodes interact with a (fictitious)
pairwise repulsive force that is determined by the synaptic
weights between the neurons. To have the pseudoparticles
representing neurons that are more strongly connected stay
close to one another, we choose a repulsive pairwise force


Fi,j = êj,i

w2
i,j + w2

j,i

(10)

to act on particle i due to j with êj,i = 
rj,i/|
rj,i | being
the unit vector along the 
rj,i = 
ri − 
rj direction (in the
two-dimensional pseudospace). In fitting the entire layout of
the pseudoparticles (representing neurons) to a fixed display
area, the strength k of the confining harmonic potential
is adjusted so that, in an equilibrium arrangement of the
particles, the radial coordinate 
r of the particle farthest from
the origin of the potential has magnitude equal to 1. Such a
pseudophysical system of neurons is relaxed to reach a stable
arrangement of neurons in which the net force on each pseu-
doparticle (neuron) is zero. The relaxation is accomplished
through a deterministic, overdamped dynamics in which the
velocity of each node is proportional to the net force it
experiences,

d
ri

dt
= −k
ri +

∑
j


Fi,j . (11)

The representative layouts for the marked data points
in Fig. 5 are shown in Fig. 6, where we only show a
fraction of the synapses with strongest weights along with
the pseudopositions to reduce obscurity. We note that the
stable layouts reached are not unique for the system, and it
is possible for the pseudoparticle system to be trapped in a
metastable configuration in which strongly connected neurons
are hindered by other neurons and fail to get close to each other
during the relaxation. We do not attempt to further relax the
layout (by, e.g., perturbing the positions of the neurons) after a
stable configuration is reached during the relaxation process.
(We note that for larger systems where the “hindrance” can be
more severe, one may consider a three- or higher-dimensional
pseudophysical system to help alleviate the problem.)

As revealed in layouts of Fig. 6, the jump in the firing
rate near w� = 0.017 is accompanied by the formation of a
path conformation in the network where synapses of stronger
synaptic weights connect a sequence of neurons and facilitate
the propagation of activities along the path. Such a path can
form a closed loop near the jump but become less likely to do
so as w� is increased. The path or loop structure is stable in
the system such that once it forms, it will generally remain to
the end of our simulation run at a fixed w� value. As we only
present results of simulations from uniform initial networks,
there is no hysteresis loop in Fig. 5. However, the jump in the
firing rate signals a first-order phase transition. While we have
not attempted a systematic study of hysteresis effects with
larger systems, we do see some degree of hysteresis in smaller
(N � 16) networks: If we use a loop conformation obtained in
the stationary state of the network at a w� value above the jump
as the initial condition for the simulation of the network at a w�

value below the jump, the loop conformation can sometimes
persist over the course of the entire simulation. With a path
or loop conformation of the network, the tiered side peaks of
the synaptic weight distribution in this area come from the

0.040.030.0170.016

0.10.050.0420.0412

FIG. 6. (Color online) Typical resultant layouts of neurons (represented by the dots) following the pseudophysical approach described in
the text at the points marked on the activity-connectivity curve in Fig. 5. The number labeled below each layout is the corresponding value of
the plasticity parameter w�. Only the strongest 31 synaptic connections (lines with arrows) are shown in each layout.
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skip-over synapses along the path, i.e., synapses that are along
the direction of the path but bypass some of the neurons.

Eventually, with the increase of w�, the path falls apart and
the network returns to a uniform conformation around w� =
0.04. The emergence of disjoint side peaks in the synaptic
weight distribution with a slight increase of w� from 0.04 as
seen in Fig. 5 is accompanied by the formation of a sink hub
structure in the network where the high-activity level of the
hub neuron and its strong afferent synapses reinforce each
other because of the positive-feedback nature of the synaptic
plasticity. This type of hub structure is first seen at w� =
0.0411 in our simulations and can go in and out of existence
several times during the course of our simulation run at a fixed
w�. This partially explains why we only see a gradual increase
of the average activity level when a hub starts to form. The sink
hub structure becomes more and more stable as w� increases
until multiple hubs appear in the network around w� = 0.0414.
The network returns to a uniform conformation through the
increasing number of less and less significant hubs. Finally, at
sufficiently large w� the network has reached a homogeneous,
high-activity state.

We can now try to understand the formation of “path” and
“hub” conformations in different segments of the transition
region separating homogeneous, stable low- and high-activity
states of the network. Near the low-activity end of the transition
region, the sequence of neurons along the path represents a
firing order in a bout of threshold firings that is amplified
and preserved by the STDP as the path of stronger synaptic
weights. Especially when such a path forms a loop, threshold
firing activity can cycle through all neurons in the loop no
matter which one of them is triggered by the noise. However,
near the high-activity regime, each neuron generally fires
multiple times during an episode of sustaining threshold
firings with a high frequency. The firing order of neurons
loses its meaning because there are many ways of pairing up
their spikes. In this area of the transition region, the main
distinguishable feature of a neuron is simply its firing rate. In
fact, the expectation value of a synaptic weight w for a synapse
in this range can be uniquely determined from the firing rates
of its pre- and postsynaptic neurons when the firing rates of
the neurons are high enough (λ > τ−1

D ,τ−1
m ) so that the actual

timing of spikes becomes unimportant. Under such a condition,
the stationary synaptic weight under the plasticity dynamics
(6) for, say, the j → i synapse, is given by

wj,i = w� Ȳjλi

Ȳiλj

, (12)

where Ȳi ≡ 〈Yi〉 and λi ≡ 〈Si〉 are, respectively, the average
active transmitter fraction and mean firing rate of the neuron
i. With Eq. (12), the condition

wi,jwj,kwk,i = w�3 (13)

should hold for any neurons i �= j �= k in the network [25].
And, indeed, we have verified that the condition (13) is well
satisfied by the hub conformations obtained in the simulations,
but is apparently violated by the path conformations (data
analysis not presented here).

While it is tempting to correlate the layouts result-
ing from our pseudophysical arrangement with configura-

tions of physical neurons, we must caution that one can
only view such a pseudophysical approach as an arbi-
trary and nonunique way of revealing network structures.
Furthermore, the structures found by the pseudophysical
approach do not represent any direct physical informa-
tion contained in the parameters of the neuron network.
Nonetheless, it helps to provide an intuitive “structural”
understanding of the network conformation as we have shown
above.

VII. CONCLUSIONS

The event-driven algorithm presented in Sec. III improves
the accuracy and efficiency of the simulations allowing us to
gain an intensive view of the phase space of a stationary plastic
neural network. With a large number of parameters typical
for a model of a biological system, we fix all but one, the
plasticity parameter, with physiologically plausible values for
our investigation. Also, to minimize conceptual complications,
we study only the stationary properties of fully connected
networks driven by uniform, noncorrelated Poisson noise. Our
results show the network develops interesting structures in the
transition region between the stable phases corresponding to
low- and high-activity regimes. While our fully connected net-
work with a limited number of neurons is certainly inadequate
to address the dynamics of a real brain, it can be a reasonable
starting point for cultured networks consisting of hundreds of
neurons with virtually “all-to-all” interactions [13,26–29]. Our
finding suggests that emergent structures in these networks are
more likely to be seen when it is firing intermittently in the
transition region perhaps during its development from a weakly
coupled system of neurons to a more strongly connected
network.

The characterization of network connectivity is an active
field of research with established quantifications such as the
“clustering coefficient” [30] and “modularity” [24]. However,
in the current study, we adopt a simple visualization approach
to gain a more intuitive view of the network structure. The
resultant identification of the path and hub conformations
explains, or more accurately, coincides, with the appearance of
structured side peaks in the synaptic-weight distribution and
the elevated firing rate of the neurons. While these path and
hub conformations are the simplest forms that can appear in
a connected network, the present work demonstrates that they
can arise naturally in transition regions of a neural network
under STDP and driven only by noise. The connection-weight
conformation (i.e., the distribution and correlations of synaptic
weights) of a naturally occurring network is often strongly
influenced by activity during its formation and maturation.
However, studies of network dynamics typically focus on
behavior of the network under given, static network topology
or weight conformation. Advances in the understanding of the
network plasticity are setting the stage for addressing how the
observed conformation of these networks can come about. Our
study of a pure and simple network is just an initial step along
this direction, and it leaves open questions of how variations
of biological details that are fixed in our model and different
network topology, geometry, or sparseness might affect the
emergent structures and alter the dynamical behavior of the
network.
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Furthermore, while in this work we have only considered a
stationary network driven by uncorrelated noise, arguably the
ultimate “goal” of a plastic neural network is learning to serve
specific or varying functional requirements. Recent studies
have shown that STDP is effective in detection of phase-of-
firing coded information for an individual postsynaptic neuron
[31], especially with a systematic oscillatory background field
[32], or in the storage of different timing-based firing patterns
presented to a network [33]. Such applications are possible
through the reinforcement of the timing information by the
STDP. From our analysis in Sec. VI, the hub conformations
of the stationary network synaptic weights are consistent with
a “conservative” vector field (see [25]) that can be derived
from the firing rates of the pre- and postsynaptic neurons.
On the other hand, such “conservation” is violated in path
conformations where the firing order of neurons on the path are
seen to be preserved by the STDP. This preservation of firing
order suggests that we can expect such timing-based learning
to be effective when path conformations are important, that
is, near the low-activity end of the transition region shown in
Fig. 5. It is among the goals of our future work to subject the
system to more meaningful, both timing- and rate-based inputs

to explore the changes in the stationary structures as well as
the transient dynamics of the resultant network.

Finally, there remain pronounced and puzzling features
observed in the current study that require further elucidation.
For example, while both types of conformations (hubs and
paths) appear abruptly as the plasticity parameter w� is
varied, the average firing rate increases with a discontinuous
jump accompanying the appearance of the path conformation,
but continuously for the hub. Also, the system does not
“morph” from the path conformation to the hub conformation
directly, but instead, returns to a uniform network before
developing the hub structure. This feature could suggest a
symmetry or “topological” difference between the two types
of conformations that prevents a direct transition from one
conformation to the other. We hope that further investigation
of such observations can lead to a better understanding of
plastic neural networks in general.
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