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Reconstruction of network structures from repeating spike patterns in simulated bursting dynamics
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Repeating patterns of spike sequences from a neuronal network have been proposed to be useful in the
reconstruction of the network topology. Reverberations in a physiologically realistic model with various physical
connection topologies (from random to scale free) have been simulated to study the effectiveness of the pattern-
matching method in the reconstruction of network topology from network dynamics. Simulation results show
that functional networks reconstructed from repeating spike patterns can be quite different from the original
physical networks; even global properties, such as the degree distribution, cannot always be recovered. However,
the pattern-matching method can be effective in identifying hubs in the network. Since the form of reverberations
is quite different for networks with and without hubs, the form of reverberations together with the reconstruction
by repeating spike patterns might provide a reliable method to detect hubs in neuronal cultures.
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I. INTRODUCTION

One of the most fundamental problems in the understanding
of neural networks is to relate the observed dynamics of
a network to its connection structure [1]. Since networks
made of similar elements and interactions, such as our brains,
can perform seemingly very different tasks, it is believed
that the functions of the network are mainly governed by
its connection structure not its constituents. In general, the
behavior of a network is governed by the dynamics of its
individual elements, their interactions, and their connection
topology [2]. It is straightforward to compute the dynamics of
the network when all these three factors are known. However,
the reverse problem of reconstructing the structure of the
network from its dynamics is highly nontrivial [3]. It is possible
that different physical connection structures might give rise to
similar observed dynamics. Also, the dynamics of a network
can be history dependent (memory) without any changes in
physical connections.

However, since the physical connection of a neural network
is usually not available and the network dynamics is the
only information one can obtain from a neural network,
many studies have been devoted to the studies of network
reconstruction from the observed dynamics, such as cross
correlation [4], Granger causality [5], transfer entropy [6], etc.
Reconstructing the underlying network connection solely from
the measurement of the time-series signal of the elements is
in general a difficult task, albeit it can be achieved recently
for undirected networks of uniform coupling strengths [3]
or for directed networks with loop-free structure [4]. The
problem becomes even more challenging for the case of
neuronal networks due to the directed synaptic connections
and their dynamically dependent plasticity. One intuitively
simple attempt for neuronal network reconstruction is based
on repeating spatial temporal firing patterns [7] of the network.
In the concept of cell assembly [8], proposed by Hebb as
a possible mechanism for the realization of higher brain
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functions from interconnected neurons, these repeating spike
patterns are believed to be related to the network connection
structure of the cell assembly. One of the earliest attempts for
the search of cell assembly [9] was to use multisite recordings
of neuronal activities to examine the spatial-temporal firing
patterns in cultures and in vivo experiments. In these studies,
the repeating spike patterns are considered fundamental be-
cause they represent a dynamical characteristic of the network
which should be intimately related to its connection structure.
Although the relation between these repeating spike patterns
and the network structure is still far from clear, one can still
“reconstruct” network structures from these patterns, if the
notion of “fire together, wire together” is used. With this
heuristic rule, repeating spike patterns obtained from neuronal
cultures have been used to reconstruct network structures [7].

One important characteristic of network reconstructed from
dynamics is that the reconstructed network structures are
only “functional.” Since it is known that even a simple
network of cultured neurons can display a different kind of
dynamics within a short time when drugs [10] are added to
the perfusion, the functional network deduced from dynamics
might not reflect the physical connections in the system. It is
not uncommon that different studies of functional networks
in the brain can find both scale-free [11] and small-world
[12] topologies. Presumably, different kinds of functional
topologies could be created dynamically from the same
physical network. Very little is known about the relation
between the functional network and its physical counterpart.
It would be desirable if there were control experiments in
which both the physical connection and resultant dynamics
are known so that we can study the relation between the
functional network and the physical network. Unfortunately,
these ideal experiments do not exist yet. As a remedy for
such a situation, computer simulations might be useful. In
this article, we describe our studies on the relation between
the physical network and its reconstructed functional network
from repeating spike patterns in the simulation of a physio-
logically realistic model [13], which is known to reproduce
reverberations found in experiments [14]. Our results suggest
that the method of repeating spike patterns might be useful for
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the local reconstruction of hubs during reverberation if hubs
exist. However, as global structure is concerned, such as the
degree distribution, the repeating-spike-pattern method might
not be applicable.

II. METHODS

Our simulation studies of relation between physical net-
works and function networks consist of three main steps,
namely (a) network generation, (b) simulation of network
dynamics, and (c) functional-network reconstruction. We use
a network generation method in which the topologies of the
network can be changed continuously from random to scale
free by tuning some system parameters. This flexibility will
allow us to use the same structure generation algorithm for
various topologies and more importantly to generate structures
in between random and scale free. For the network dynamic
simulation, a physiologically realistic model is chosen. The
model is known to be able to generate reverberation patterns
similar to experimental observations in neuronal cultures
[14]. As for the functional network reconstruction, we use
the repeating-spike-pattern method which has been used to
identify network topologies in neuronal cultures. Details of
these three steps are given below.

A. Network generation

In order to generate networks of different structures, we
used the method described by Morita [15,16]. In this method,
N vertices of the network are distributed randomly on a
two-dimensional (2D) unit square. Two vertices i and j are
connected if their locations satisfy the equation,

2l2
i,j

aiaj

< δ, (1)

where li,j is the distance between the two points, δ is
a threshold parameter, and ai = (i/N )1/(1−γ ) for a given
parameter γ > 1. A main advantage of Morita’s method is
that different types of network topology can be generated by
continuous changes of the parameters γ and δ. Figure 1 shows
three network structures generated with different parameters in
Morita’s method along with an Erdős-Rényi random network
[17], as well as their corresponding accumulative degree (k)
distributions. From the left, the degree distributions of the
networks in Fig. 1 range from scale free with a power of −2.5
to Gaussian-like similar to the random network. Beside being
tunable in their degree distributions, the networks generated
with Morita’s method are also pertinent to a 2D geometry,
similar to a neural culture, which is apparent when comparing
the last (third from the left) network structure to the random
network with similar degree distribution on the right of Fig. 1:
the vertices that are closer to each other in the geometrical
space are more likely to be connected.

Following recent findings of small-world [18] structures in
cultured networks [19,20], we calculate the cluster coefficients
as well as average path length between nodes for the networks
in Fig. 1 and plot them as labeled in Fig. 2. Similar to the lattice
based regular network in [18], the network C has a large cluster
coefficient and relatively long average path length, since it is
similarly constrained to a geometric space while connections
are short ranged. We perform pair-rewiring steps similar to
that described in [21] to minimize the average path length of
C while preserving its degree distribution. The network C16 as
depicted in the inset of Fig. 2, arrived at after 16 pair-rewiring
steps, has an average path length on par with random network
D, while maintaining about 80% of its cluster coefficient. We
consider network C16 as a small-world intermediate between
networks C and D.

In the following analysis, we will limit our consideration to
the five different networks, each of 100 neurons, as shown in
Fig. 1 and Fig. 2 with bidirectional connectivity.

(a) (b) (c) (d)

FIG. 1. (Color online) Different network structures generated with Morita’s method [15] with A: γ = 1.5, δ = 2.7; B: γ = 3, δ = 4.7;
C: γ = 5, δ = 2; and a random network D with similar degree distribution to C.
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FIG. 2. (Color online) Average path lengths versus cluster coef-
ficients for the networks A to D as shown in Fig. 1. Network C16,
as shown in inset, is network C with 16 pairs of links rewired to
minimize average path length while preserving the degree structure
for all the nodes. It represents a small-world construction from the
geometrically constrained network C.

B. Model of network dynamics

The notion of fire together, wire together has been used
in many studies to identify functional connection in cultures.
Usually, “fire together” can mean strong correlation or even
synchronization. It is well known that neuronal cultures
develop synchronized bursting during development, although
its origin is still not clear. In a study of using core patterns to
identify connection during development, Sun et al. [7] have
also used the repeated spike patterns in synchronized bursts
to identify connections. Here, our simulation is based on a
recent model by Volman et al. [13] describing the dynamics
of reverberation activity in cultured neural networks in which
synchronized bursts have been observed. In this model, the
dynamics of neurons follows the Morris-Lecar model [22,23],

C
dV

dt
= −Iion + G (Vr − V ) + Ibg, (2a)

dW

dt
= θ

W∞ − W

τW

, (2b)

where

Iion = gCam∞ (V − VCa) + gKW (V − VK) + gL (V − VL)
(3)

is the current through the membrane ion channels,

τW =
(

cosh
V − V3

2V4

)−1

, (4a)

W∞ = 1

2

(
1 + tanh

V − V3

V4

)
, (4b)

m∞ = 1

2

(
1 + tanh

V − V1

V2

)
(4c)

are the voltage dependent dynamic parameters, and the
threshold Vth of membrane potential defines the spiking events
which result in synchronous releases of neural transmitters at
the efferent synapses. Additionally, a residual calcium variable

RCa driven by the spiking events,

d

dt
RCa = −βRn

Ca

kn
R + Rn

Ca

+ Ip + Sγ ln
R0

Ca

RCa
, (5)

where the spike train S = ∑
σ δ (t − tσ ), with tσ being the time

of the spike event σ , is used to determine the rate,

η = ηmax
Rm

Ca

km
a + Rm

Ca

, (6)

of synapse-dependent asynchronous releases following an
independent Poisson process at each efferent synapse. The
neural transmitters released by the spike-driven synchronous
and calcium-dependent asynchronous events follow a four-
state decaying dynamics based on a modification of the
Tsodyks-Uziel-Markram (TUM) model [24],

dX

dt
= Q

τs

+ Z

τr

− uXS − Xξ, (7a)

dY

dt
= − Y

τd

+ uXS + Xξ, (7b)

dZ

dt
= Y

τd

− Z

τr

− Z

τl

, (7c)

dQ

dt
= Z

τl

− Q

τs

, (7d)

where ξ = ξ̄
∑

a δ (t − ta) summing over asynchronous re-
lease event a with Poisson rate given by (6), to include
a superinactive state Q [13]. Multiplying by the synaptic
weights, the fractions of neural transmitters in the active state Y

(7b) determine the contribution of the afferent synapses to the
membrane conductance G of a postsynaptic neuron through a
linear sum

Gi =
∑

j

wjiYji (8)

over all presynaptic neurons j of a given postsynaptic neuron
i. Following [14], the synaptic weights w are randomly drawn
from a truncated Gaussian distribution with a width that is
±20% of its mean w̄. The superinactive state Q (7d) of
neural transmitters plays a part in taking up neural transmitters
during a burst of reverberations and eventually terminates the
reverberatory burst. In this model, there are two types of noises.
The first one is the background current Ibg which is uniformly
added to every neuron to mimic a noisy environment. The
other is the asynchronous release due to the residual calcium
in the neuron after firing. The latter types of noise can be
considered a kind of short-term memory because it is related
to the firing history of the neuron. The Poisson processes
modeling these asynchronous events are the only sources of
stochasticity in the model. A typical bursting state of the
system is shown in Fig. 3 with sub-burst reverberations. Notice
that in [13], the reverberatory burst was triggered by an external
stimulus, while spontaneous bursting is possible but rare. This
corresponds to the regime of high to infinite restitution ratio
in our cases where the networks will be silent by themselves.

Note that the chosen residual calcium dynamics and the
synaptic mechanisms are responsible for the reverberation
(bursts) shown in Fig. 3. The dynamics of the network depends
on the parameters of the model as well as the network
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FIG. 3. (Color online) Typical bursting behavior of a random
network (D in Fig. 1) with neuron and synaptic transmission models
described in [13]. The left panels show eight bursts for a duration of
about 20 s, while the right panels are the zoom in on the first burst.
The upper panels are the raster plots marking the spiking events
for the neurons indexed on the vertical axes. The bottom panels are
histograms with the vertical axis showing the number of spikes within
a sliding bin of 4 ms.

topology. As there are a total of 30 parameters used from
(2) to (7) to define the model in [13], we do not intend to be
comprehensive in exploring the entire phase space. Instead,
we fix all parameters with values shown in Table I, similar
to what were documented in [13], except for the background
current Ibg and mean synaptic weight w̄, which are varied to
obtain a network with spontaneous bursting behavior. Since
the reverberations reproduced in this model with a random
network are consistent with those found in experiments [13],
presumably the simulations we carry out here with different
topologies are physiologically realistic.

C. Repeating-spike-pattern detection

We follow the method in [7] to use repeating spike patterns
for the reconstruction of the network in our simulation. Briefly,

TABLE I. Values of fixed model parameters.

Morris-Lecar model

VCa 100 mV V2 15 mV gL 0.5 mS
VK −70 mV V3 0 mV C 1 μF
VL −65 mV V4 30 mV θ 0.2 ms−1

Vr 0 mV gCa 1.1 mS Vth 10 mV
V1 −1 mV gK 2 mS

TUM synaptic transmission

τd 10 ms τl 600 ms u 0.2
τr 300 ms τs 5000 ms ξ̄ 0.02

Residual calcium dynamics

β 0.005 μM
ms γ 0.033 ka 0.1 μM

kR 0.4 μM R0
Ca 2000 μM m 4

Ip 1.1 × 10−4 μM
ms ηmax 0.32 ms−1 n 2

repeating spike patterns are defined as repetitive patterns of
a sequence of firings from different neurons and a link is
assigned between two neurons (wire together) if the spikes
of these two neurons are linked in time (fire together). To
detect repeating spike patterns, a template-matching algorithm
following [25] was implemented to locate the repetitive firing
patterns among these spiking data to form the repeating
patterns.

Since the repeating spike patterns are assumed to have linear
connections with only links between adjacent neurons in the
spike-time sequence [7], this reconstruction method ignores
the possibility of “branching” in the propagation of spiking
activity and could likely predict some connections that were
not present in the actual network structure. Note that, in [7],
spike sorting was needed to produce a vector of spike times
for each identified neuron from the time series recorded by
a multielectrode array. In our case, since all the neurons are
known, no spike sorting is needed and only spike detection
is performed to produce the spike-time vector. In the current
study, a similar MATLAB code as that used in [7] is applied to
the spiking data generated by the dynamics in Sec. II B on the
networks described in Sec. II A to find repeating spike patterns
for the systems.

III. RESULTS

With the methods described above, it is obvious that, for
a network with fixed topology, the dynamics of the network
can be strongly dependent on the choice of synaptic strength
and the background current. If we want to reconstruct the
topology of the network from the dynamics, we would like
to create a situation in which the simulation results will be
similar to those in experiments. It is known that synchronized
bursting activities emerge as cortical neuronal cultures develop
and the network connectivity increases [26,27]. As mentioned
earlier, for developing neural cultures, repeating spike patterns
will appear during spontaneous bursting. Thus our goal is
to reproduce spontaneous bursting as in [7]. In the original
model, the background current is chosen in such a way that the
network is in a quiescent steady state in the absence of input but
would produce a single, reverberatory burst after an excitatory
current is presented to one of the neurons in the network [13].
Since we would like to compare with [7], we need to adjust
the background current to give spontaneous, synchronized
bursting. Such a spontaneous burst will be followed by a
quiescent state. In experiments, the durations of the quiescent
state decrease as the culture matures, while the durations of the
bursting also decrease but less significantly. In the simulation,
we can use the ratio between these two states as an indication
of the age of the culture. For a fixed background current, this
ratio can be tuned by the synaptic strength.

To define the bursting state of the network in our simulation,
we use a hysteretic criteria: the system is considered to enter
bursting (resting) state when there have been more (less) than
nine (three) distinct neurons firing spikes within the last 200 ms
time window. These numbers are chosen to be similar to
those in real experiments. With the defined states, we can
measure the durations of bursting and resting episodes. In
simulations, for a given background current Ibg ranging from
27.0 to 29.5 μA, we adjust the mean synaptic weight w̄ of the
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FIG. 4. (Color online) Phase diagram for bursting dynamics on a
random network. Colors (shades of gray) indicate the restitution ratio
of bursting, while labeled lines show the average bursting period in
milliseconds.

network to obtain bursting behavior similar to what is shown
Fig. 3. For further pattern matching, we choose the mean
synaptic weight so that the ratio between average durations
of resting to bursting states (restitution ratio) is 3 to 1 [28] as
indicated by circles in Fig. 4. Since Ibg determines how easily
a neuron is ready to fire, while wscale determines how strongly
a neuron’s firing can influence others, one would expect an
increase in Ibg would be compensated by a decrease of wscale.
From our simulations, this trend can be more or less observed
for networks with more uniform, Gaussian degree distribution
(network C and D in Fig. 1 as well as C16 in Fig. 2). In the
following, we report the results of our simulation with the
parameters given in Table I, while the background current Ibg

and mean synaptic weight scale wscale are adjusted to give the
restitution ratio of 3 to 1.

A. Bursting behavior

For each of the networks given in Fig. 1, we perform
simulations to obtain spontaneous bursting by varying the
background current Ibg and mean synaptic weight scale wscale.
Figure 5 are the typical results for spontaneous bursting for a
scale-free and a random network. It can be seen from Fig. 5
that the main difference in the firing patterns between a random
network and a scale-free network is the reverberations within
the synchronized bursts of random network and their absence
in the scale-free network. This difference in bursting behavior
is probably due to the existence of hub neurons in the scale-free
network, which are found to stay active the entire time for
any reasonable choices of Ibg and wscale that allow for other
neurons in the network to be activated. This constant activation
disrupts the quiescence between the reverberations and breaks
the coordinated firing of neurons required by the reverberation.
The situation is especially true for cases of lower background
current where stronger synaptic weights are required. This
is one of the reasons that we adopted the hysteretic criteria
described in Sec. III to define the bursting (resting) states of
the systems.
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FIG. 5. (Color online) Comparison of bursting behavior for

scale-free network A (left) with random network D (right) in
Fig. 1 at three different background currents: from top down
Ibg = 27.5,28.5,29.5 μA. The horizontal axes measure time in
milliseconds, while the vertical axes show the number of spikes within
a 4 ms sliding window.

The qualitative change of bursting behavior with different
network topologies can also be seen in the dependence of the
mean burst duration on Ibg as shown from Fig. 6. It can be seen
in Fig. 6 that the burst duration of networks with narrow degree
distribution, such as C, C16, and D, are insensitive to Ibg when
compared to networks with broader degree distribution, such
as A and B. Beside the dependence of burst duration on Ibg,
we note there are significantly less reverberations (repeated
rises of system activity level, as can be seen in the left panel of

FIG. 6. (Color online) Average burst durations when mean
synaptic weights of a network are adjusted to have 3-to-1 rest-to-burst
duration ratio for the networks given in Fig. 1 and Fig. 2 as functions
of the background current given in the model.
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Fig. 3) within a burst for scale-free network A. It is less so for
network B, where the reverberations are quite evident in the
midrange of background current (see Supplemental Material
[29]). The insensitivity of burst duration on Ibg for networks
C, C16, and D in Fig. 6 shows the equivalence of excitability
of neurons and efficacy of synapses in networks of narrow
degree distributions. Both of the networks also retain clear
reverberatory behavior for the entire range of background
current we considered (see Supplemental Material [29]).

B. Properties of repeating spike patterns

With time series similar to those from Fig. 5 for all the
neurons in the networks, the template-matching method in
[7] is used to identify repeating spike patterns. Data sets
corresponding to eight bursting events of the networks are
used for repeating-spike-pattern identifications. This amounts
to about 3000 spikes per data set, similar to what was
considered in [7] limited by the computer capability for the
algorithm used. While more patterns will generally result from
a larger data set, we do not expect a qualitative change to
our conclusions presented below (see Supplemental Material
[29]). Each identified repeating spike pattern is cross-checked
with the original network used in the simulation to see if
(a) the nodes in the pattern form a connected subnetwork
with the original links and (b) the nodes in the identified
repeating spike pattern are actually connected sequentially in
the nominal network as suggested in [7]. Figure 7 shows the
results of the statistics of the identified repeating spike patterns
for these two properties. A remarkable feature of Fig. 7 is that
the number of detected repeating spike patterns are high in
networks with narrow degree distributions (C, C16, and D).
That is, repeating spike patterns are more frequent in networks
with narrow degree distribution. Unfortunately, most of the
detected patterns consist of nodes that do not form a connected
subnetwork in the original network. These repeating spike
patterns will give erroneous results if they are used for the
reconstruction of the original network.

Furthermore, for those patterns with nodes forming a
connected subnetwork, only a small fraction of them are
actually linked sequentially following the spike-time orders
in the patterns. On the other hand, although there are far less
repeating spike patterns detected for the scale-free network A,
a much more significant fraction of these patterns actually
consist of nodes forming a connected subnetwork in the
original nominal networks, especially for higher background
current Ibg = 29.5 μA. It can be seen from Fig. 7 that the
connected fraction of detected patterns for the scale-free
network seems to be smallest at Ibg = 28.5 μA. This is mainly
due to the peaking of spurious patterns, since the number of
connected patterns decreases monotonically with Ibg.

Based on the repeating spike patterns identified, we can
follow the method in [7] to obtain the reconstructed functional
network for the four cases as shown in Fig. 8. It can be seen
from the figure that the physical connection of the functional
network is not only quite different from the physical network,
but a global property such as the degree distribution of the
functional network is also not similar to the physical network.

FIG. 7. (Color online) Number of repeating spike patterns iden-
tified from spiking data of eight bursts for the five networks in Figs. 1
and 2 for different levels of background current. Blue (full) bars in
top panels are the total numbers of identified patterns from the code in
[7]. Pink (light gray) bars are for the number of identified patterns that
form a connected subnetwork in the original nominal networks used
to generate the spiking data. Green (dark) bars are for the number
of patterns whose neurons are actually connected following the same
sequence of spike times in each pattern. The upper panels show
the number of patterns in units of hundreds, while the lower panels
show the fractions of connected patterns relative to the total number
detected.

FIG. 8. (Color online) Structures of the reconstructed networks
(upper panels) from dynamics of scale-free network A (left) and
random network D (right), as well as their corresponding degree
distributions (lower panels). The links colored in pink (light gray),
green (dark), and blue (medium gray) are respectively constructed
from patterns of length �8, >32, and otherwise.
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IV. DISCUSSIONS

From the results obtained above, it is clear that functional
networks reconstructed from repeating spike patterns can be
quite different from the original physical network. The major
reason is that branching in the propagation of neural activity
is ignored in our method of reconstruction [7] with the fire
together, wire together heuristic rule. In our simulations,
branching is actually quite important in all the networks
studied here. This has actually been considered by Izhikevich
[30] in the so-called polychronization of spiking activity.
Therefore, we have adopted a relaxed criteria to assess the
correlation between the repeating spike patterns and the
nominal network structures based on whether the nodes that
participated in a repeating spike pattern form a connected
subnetwork. This is the minimal requirement for a spanning
tree to exist on the nominal network that connects all the firing
nodes of a repeating spike pattern. We note that this does not
imply that patterns that fail to be connected are completely
fallacious, since some key nodes could have been left out due
to numerical error in the template-matching algorithm. In the
current study, we do not further investigate how the nominal
network structure underlying a repeating spike pattern can be
recovered from the spike pattern itself.

Also, we have shown (Fig. 7) that the effectiveness of
using the repeating spike patterns to reconstruct the underlying
nominal network structure is strongly dependent on the topol-
ogy of the underlying network and the operating conditions
when the spikes are generated. One major difference between
a scale-free network and a random network is the existence
of well-connected hubs. These hubs can play important roles
in relaying information and instigate or modulate activities of
the system [31]. A possible reason for the higher fractions
of connected repeating spike patterns found for the scale-free
A and intermediate B networks is that the high degree of
connectivity for these hubs helps the repeating spike patterns
with hubs to form connected subnetworks of the systems. To
verify this hypothesis, we plot in Fig. 9 the mean fractions
of a node’s occurrences in repeating spike patterns that form
connected subnetworks versus the degree of the node. It is
evident from Fig. 9 that patterns of a node with higher degree

FIG. 9. (Color online) Mean fractions of node occurrences in
detected patterns that are connected as functions of node degrees.
The four different networks are represented by different symbols:
A: squares; B: circles; C: triangles; D: pluses.

are more likely to be connected and the highly connected hub
nodes in networks A and B are indeed responsible for the
high fractions of connected patterns. For larger background
current, there exists a degree threshold kc ≈ 30, above which
all patterns participated by such a node are connected. Such a
threshold is not clearly evident for lower background current
where the synaptic weights are stronger to compensate the
lower excitability of neurons.

In our simulations, we find that some of the repeating spike
patterns can be embedded into other repeating spike patterns,
especially those with short sequence lengths. That is, these
repeating spike patterns are subsequences of other repeating
spike patterns. These repeating spike patterns are defined as
core patterns in [7] and are thought to be more relevant to
the underlying structure of the network. However, we find
that in typical simulations, less than 10% of all the detected
repeating spike patterns are core patterns by the criteria in [7]
and only a small number of nodes in the network will take part
in these core patterns, especially for networks C and D (see
Supplemental Material [29]). If we apply our analysis by using
core patterns, nodes that participated in the core patterns do
have a higher fraction to be connected except for the random
network D, and the breakdown to node degree also shows
sharper transitions than those shown in Fig. 9 for core patterns
(see Supplemental Material [29]). It is still not clear whether
the repeating spike patterns or the core patterns are better suited
for network reconstruction. Presumably, the core patterns are
controlled by the “core nodes,” which are likely the hubs in the
network while almost all nodes in the network can participate
in the repeating spike patterns as long as excitation (noise) in
the system is strong enough. In this aspect, the repeating spike
patterns should be more relevant in providing information for
the reconstruction of the network topology.

The effects of hubs on functional reconstruction can also
be seen in the intermediate networks. The network B in
Fig. 1 represents an intermediate case between a scale-free
network with power-law tail in the degree distribution and
a more uniformly connected network with Gaussian degree
distribution. While there are still a number of hub neurons in
such a network, their degrees are limited compared to the case
of a scale-free network. Consequently, unlike the scale-free
network, all neurons can stop firing during the resting period
of its dynamics. We see clear reverberatory bursts in the
midrange of background current Ibg = 28.0–29.0 μA (see
Supplemental Material [29]). Applying the template-matching
method, the spiking dynamics of such a network produces the
largest numbers of repeating spike patterns in all conditions
studied here. Similar to scale-free network A, the number of
connected patterns increases consistently with an increase of
background current. Still, only a small fraction of the patterns
are actually connected sequentially following their spike times.
The picture that emerges from our simulations is that although
the functional network reconstructed from repeating spike
patterns can be quite different from the underlying physical
network and even the degree distribution recovered can be
quite different, the repeating-spike-pattern method can be
effective in identifying hubs when hubs exist. Since the form
of reverberations are quite different for networks with and
without hubs (Fig 5), the form of reverberations together
with the reconstruction by repeating spike patterns might
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provide a reliable method to detect hubs in the neuronal
cultures.

In the current setup, the characteristics of detected repeating
spike patterns in the small-world network C16 seem to well
interpolate that of the geometrically constrained network C and
random network D. The low fractions of connected patterns
can be correlated with the absence of hubs in these networks
following the discussion above. There is a steady increase in
the number of detected patterns as a geometrically constrained
network becomes more random by rewiring. However, the
number of these patterns that form connected subnetworks
of the underlying nominal network actually becomes less
as more links are rewired. While the rewired long links
introduce more possibilities for activity propagation, hence
more patterns, the neighborhood, cluster structure for a
geometrically constrained network can make it more likely
for an identified repeating spike pattern to be connected. We
note that for the networks of 100 neurons in the current
study, the difference in path lengths is very limited for typical
consideration of small-world networks. While our results
provide a hint on what can be expected, to properly address
the small-world effect in repeating spike patterns of simulated
neuron networks, significant computing resources need to be
invested to consider networks of higher orders of magnitudes
in sizes.

Since functional networks reconstructed from repeating
spike patterns are governed by both the topology and dynamics
of the network and their excitations are the outcome of collec-
tive dynamics of the system, perhaps the functional network
structure is more relevant to the concept of cell assembly. In
fact, Hebb [8] had used the phrase “functional unit” when he
referred to connections in a cell assembly. In this sense, the

repeating spike patterns provide a convenient way to look at the
complexity of the system. While their correspondence to the
underlying structure of the network can be complicated by var-
ious factors as we have shown in the current study, they are per-
haps more relevant to the functional dynamics of the network
that might serve to fulfill certain biological purposes. The sit-
uation is somewhat similar to relating the gene expression in a
cell with the primary structure of its DNA sequence. Recently,
a method [4] based on covariance and time delay is used to
extract the functional connection between different astrocytes
during the propagation of Ca2+ waves induced by an external
stimulation. However, this method probably cannot be applied
to the case of spontaneous reverberations studied here because
in order for the method in [4] to work, special constraints are
introduced for the network reconstruction. These constraints
are related to a single source of stimulation and the directional
nature of the Ca2+ wave propagation (time delay). In the
case of spontaneous reverberations, both of these features are
absent. In this work, we studied only spontaneous network
dynamics. Similar methods of pattern matching have been
used successfully in the identification of the functional unit by
using evoked activities. In our current study, the excitations for
the networks are provided by noise. If some of the nodes in the
nominal networks are used as inputs, our simulation method
can also be used to study the repeating spike patterns in evoked
activities.
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