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Adaptive synchronization and anticipatory dynamical systems
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Many biological systems can sense periodical variations in a stimulus input and produce well-timed,
anticipatory responses after the input is removed. Such systems show memory effects for retaining timing
information in the stimulus and cannot be understood from traditional synchronization consideration of passive
oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable
systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses
similar to those from experiments can be obtained. Furthermore, a well-known model of working memory
is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic
facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with

plasticity.
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The interaction between a dynamical system capable
of oscillatory behavior and an external periodic stimulus
input represents the fundamental physics underlying many
biological and engineering systems [1,2]. Under the titles
of synchronization or entrainment, active studies have been
devoted to various aspects of these systems, for example, the
existence and degree of synchrony under different parameter
conditions, the stability of the synchronous state, the influence
of noise [1], and, recently, the efficiency of entrainment
[3]. While these mostly involve how the systems enter
or stay under the rhythmic interaction, the post-interaction
behavior of the systems often plays important roles in many
biological functions [4]. This potentially allows the biological
systems to recognize the temporal patterns in the environment
and produce anticipatory responses to help their survival.
Examples of such transient responses following the end of
stimulus have been observed in ganglion cells of retina under
light stimulus [5], growth of slime mold influenced by varying
humidity [6], and the optic tectum of zebrafish conditioned
with moving periodic scenery [7]. However, the underlying
physics for this time perception mechanism is still unclear and
there is an ongoing debate on whether a clock is needed [8].

To explain the anticipative dynamics, it has been proposed
that the periods of various lengths can be built into the
structure of a network with loops of various sizes [9]. External
stimulations of a particular period will then activate a particular
circuit in the system to provide the memory effect. This
implementation of “memory” with prefabricated structure is
similar in spirit to the phase model used to understand the
anticipation of slime mold [6]. In this phase model, oscillators
with various periods must be first put into the system before an
external stimulation of a particular frequency can be used to
entrain or synchronize the oscillators with the same frequency
to provide the anticipation effect. An obvious objection to this
type of model of prefabricated structures is that a continuous
change in external periods will not produce a continuous
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change in the response; contrary to findings of experiments
with retina.

In our view, the anticipation effect is the adaptation of a
biological system to a periodic stimulation. In the following,
we show the function of such anticipation can be achieved by a
minimal dynamical system with two-dimensional oscillations
controlled by a slow adaptive dynamics. A surprisingly good
retention of periodicity information for a range of stimulus
periods can be obtained with single parameter adjustment,
and thus can be easily targeted evolutionarily. Such dynam-
ical mechanism does not necessarily describe a dominating
microscopic cellular process or pathway. It can also act as
a coarse-grained, thermodynamic description for systems of
many degrees of freedom. In a neural network model for
working memory [10], we show an anticipative dynamics
can be produced in the mean-field level of the network with
the adaptation coming from the residual calcium dynamics
of synaptic facilitation. This suggests a validity test for our
idea in experiments. Furthermore, our model demonstrates
that the anticipative mechanism can be quite generic and
may be widespread in natural neural systems; hinting that
the perception of time in biological systems does not require
the existence of a clock.

To substantiate our considerations, we use a reduced
FitzHugh-Nagumo (FHN) model [11] defined by the equations

dv v3
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Note that we are just using the generic excitable properties
of the model to demonstrate our idea. The excited state of
the FHN model considered here does not represent an action
potential and the time scale of the system can be much longer
than the spiking dynamics typically associated with the FHN
model. Usually, the system parameter a is a constant for the
FHN model. However, to perceive the period of a periodic
stimulus input, we turn a into a dynamic variable, allowing
the system to adapt to different limiting behavior. It is known
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that the dynamics of v and w can be synchronized to that of the
periodic I when a and t are properly chosen. The adaptation
of a to the external period can be written in general as

da 1 3

i @ —a, 3)
where d = g(v,w) is the entrained value of a and we assume
that the adaptive process is characterized by a single time scale
of relaxation much slower than the FHN dynamics (z, > 7).
The physical meaning of such requirement is that the value
of a will be close to the entrained value @ when there is
external stimulation and will relax back to its resting value
ap when the stimulation is removed. Anticipative dynamics
will be manifested during the relaxation of a from a to ap.
Our task is to find a reasonable form for g(v,w) to ensure the
adaptation dynamics is stable.

As adaptation is a slower process when compared to the
oscillatory dynamics of the system, we expect (@) to depend on
moments of v and w, where (-) indicates time-averaged values
over stationary cycles of the driven system. It can be shown
that since (v) = —(a) and (w) = (v) — %(v3> + (Iex(2)), only
(w) contains significant information of I.x. Thus, to the lowest
order, the function g(v,w) is of the form

g =ac— puw, )

where a, and p are constant parameters that need to be tuned
for the best behavior. To maintain a stable fixed point at a =
aop > 1 under the adaptation dynamic (3), in the absence of
external stimulus, the parameters in Eq. (4) should satisfy [12]

%
a. = (1 —P)ao+p?~ )
For a more intuitive view of the phase space, we will use p
and ay as the control parameters for the adaptive dynamics.

Figure 1 shows the response of our adaptive model to a
transient periodic stimulation (7; = 40) with p = 0.3, qp =
1.2. Here, for convenience, we have used a dimensionless
time with constants T = 10 and 7, = 100. It can be seen in
Fig. 1(a) that the parameter a starts from its resting value
of 1.2 and decreases to a mean value of (a) ~ 0.8 as the
stimulus Iy is applied and entrains the dynamics of v and
w (not shown). After I, has been switched off, a relaxes
back to its original value ag. During the relaxation period,
the system produces a few residual oscillations with periods
close to that of the stimulus before returning to the resting
state. This represents the omitted stimulus responses (OSRs)
[5] of the system, showing anticipative dynamics similar to the
observations in, e.g., zebrafish [7].

Simulations similar to that shown in Fig. 1 have also been
performed for various stimulation periods. As expected, the ()
in the synchronized state is a function of stimulation period
[see Fig. 2(a)]. That is, the information of the stimulation
period can be stored in {a). With the stored synchronized state
a = (a), the anticipative dynamics or OSRs can be seen when
a relaxes back to aq after the external stimulation has been
removed. In a sense, the OSR or anticipative dynamics is the
by-product of the adaptation.

Ideally, one expects the sustained oscillation periods will
match the period of the stimulus input 7; the position a & (a)
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FIG. 1. (Color online) (a) Sustained oscillations of a stimulus-
induced, adaptive oscillator. The square-wave stimulus (shaded area)
lasting for 20 cycles has an amplitude of 1, periods of 40, and duty
ratio of 1/2. The control parameters for the adaptive dynamics are
ap = 1.2 and p = 0.3. (b) State space trajectory for the same process
when the system is driven from the fixed point [red (light) curve]
and when it relaxes back to the fixed point [blue (dark) curve]. The
attractor manifold of the system [cyan (shaded) surface] is constructed
from the limit cycles of the simplified FitzHugh-Nagumo model for
fixed a < 1 values. The black line attached to the manifold consists
of the fixed points fora > 1.

of the driven limit cycle should satisfy
Tw((a)) = T, (©)

where Tp,(a) denotes the oscillation periods in the original
FHN system with a static a. The inverse T '(T;) is shown
as the dashed line in Fig. 2(a). The value of (a), which is
a function of the stimulus period, is plotted as a solid line
in Fig. 2. The condition (6) implies two of the curves should
coincide with each other. However, we see significant deviation
even in the region where the first OSR retains the stimulus
period well [see Fig. 2(b)]. This suggests that other variables
additional to a, such as the phase information in cycle of
v-w oscillations, are also contributing to the encoding of
the periodicity information. Since we are interested in the
general phenomena of a functioning anticipation, we will
focus on the role of a single adaptive parameter for the
current study. Additionally, one can constrain the dynamics
of a so that condition (6) is satisfied, or so that one would
have g = ngl(Ts) for the average of (4). This likely involves
optimizations specific to the systems of interest and can be a
subject of future studies.
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FIG. 2. (Color online) (a) The mean value of the adaptive vari-
able (a) under periodic stimulus as a function of the stimulus period
(solid line) compared with the value of a in a nonadaptive FHN
oscillator that satisfies Ty,(a) = T, (dashed line). (b) Delay time of
first omitted stimulus response peak t; (solid line, left scale) as a
function of stimulus period compared to t; = 7; (dotted line). The
dashed curve (right scale) shows the amplitude of the response peak.
The curves split into a shaded area when the driven system does
not settle into a simple limit cycle. The parameters for the adaptive
dynamics are ap = 1.4 and p = 0.4.

Following [5], the effectiveness of rhythmic memory can
be assessed by the timing of the first OSR peak right after the
stop of the periodic stimulus. Typically, the retention of the
information about the stimulus period requires a one-to-one
mapping of the period to the latency. As shown in Fig. 2(b),
the linear relation of the first OSR time with the stimulus
period at p = 0.4 and ay = 1.4 shows a good retention of
the stimulus-period information: Comparing with the stimulus
period, the latency t; has a constant delay of 15 units for
the range of stimulus period from 28 to 45. Such a delay
depends on the details of the model and can be interpreted
as the time taken by the system to respond to the missing
stimulus. Well-timed OSRs similar to Fig. 2(b) can also be
obtained for, say, a different value of p or r, when the value
of agp is properly chosen [12]. As expected from the finite
oscillation range of our reduced FitzHugh-Nagumo model,
the amplitude of the OSR peak drops significantly outside this
range. For a fast stimulus [small 7§ as indicated by the shaded
area in Fig. 2(b)], the system may not be able to settle into a
simple limit cycle with the same small period, leading to a more
complex behavior similar to the observation in [13], while for
a slow stimulus, the system will return to the quiescent fixed
point before producing an OSR.

In our conceptual model, it should be clear that all we need
to implement anticipative dynamics in an excitable system
is an adaptive excitability. Interestingly, such a mechanism
has already been used in the modeling of working memory
(WM). Mongillo et al. [10] consider WM as the result of the
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FIG. 3. (Color online) Anticipative behavior of mean-field dy-
namics for a network model of working memory [10] (see [12]).
The trajectory and attractor manifold are similar to that described
in Fig. 1(b). The inset shows the time course of the network firing

rate £ driven by a square-wave stimulus (shaded) and its residual
oscillations after the stimulus stops.

interactions between synaptic facilitation and depression. As
illustrated in Fig. 3, anticipative dynamics can also be observed
in such WM model [14]. In a mean-field approximation [15],
the neocortical network in [10] is described by the firing
rate E of the neural tissue, the available neurotransmitter
fraction x, and the probability of synaptic release u (see the
supplementary material of [10]). The parameter u there plays
a similar role as a in our FHN model, namely, the value of
u determines whether the stationary state of the system is
at a stable fixed point or on a limit cycle. Furthermore, the
adaptation dynamic of u# comes from synaptic facilitation
[10,16] and relates to the calcium concentration of the
presynaptic cell. One interpretation of such relation is that the
perception of time is being stored in the calcium concentration
in these cells.

In a broader view of these systems, the transient, antici-
pative oscillations following the end of the periodic stimulus
are similar to the burster dynamics found in neurosciences
[17] where a slow variable drives the system in and out of
an oscillatory region of the state space. Since the adaptive
dynamics is much slower than the oscillation, the trajectories
of these systems mostly follow their attractor manifolds as
shown in Figs. 1(b) and 3. The deviations from the manifolds
will diminish with further increase of the slowness. In this
limit, the nature of the bifurcations is likely important in
determining how the system will return to the quiescent state.
On the other hand, the retention of the periodicity information
in the stimulus is controlled by the adaptive dynamics which
sets the position of the driven limit cycle of the system. This
information is released after the end of the stimulus and its
manifestation is determined by the position of this end point
in the state space relative to the attractor manifold. Our finding
that the periodicity information is retained in the calcium level
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in the WM of [10] is consistent with a recent report that time
perception disorders are related to WM impairment [18]. In
fact, experiments [19] have shown that network reverberations
which are believed to be related to WM are controlled by the
residual calcium level in the synapses.

We restrict the current model to the simplest dynamics of
adaptation under a periodic stimulus. We show the information
of stimulus period can be well retained with anticipative
responses in accord with the input. Such simplicity is not
without limitations. For example, with a single adaptive
parameter, the return to the quiescent state will be crossing
the same region of the state space, which implies a necessary
degradation of the periodicity information before the OSR
subsides. To have an anticipative response that is transient and
immune to degradation, a more complex model, i.e., with more
variables or involving a bifurcation of higher codimensions
[20], is likely required but beyond our current discussion. On
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the other hand, experimental observations of such degradation
in the periods of OSR will be strongly indicative of a similar
simplistic mechanism at work.

The use of an adaptive system to fill a biological function
has the benefit of being continuously tunable and allows easier
optimization on a locally smooth landscape. Such mechanism
has a lower circuitry design cost and is better suited for
recurrent environmental conditions with varying time periods.
As we have shown in this paper, the perception of time of such
systems resides in the slowest dynamics involved, that is, the
adaptive parameter a in our case, or the synaptic calcium level
for a neocortical network.
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