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I. Forewords

Propagators are very important in the calculation of physical systems. We can ana-
lytically or numerically evaluate the evolution of a physical system if we can evaluate its
propagator. Therefore, we feel that we should calculate the propagator of a physical system
before we can understand this system.

Generally, most of the propagators of physical systems are not already solved or can be
easily solved. The purpose for this project is to do analytic calculations on Dirac propagator
in external fields and see if we can get an exact solution or how far can we carry on the
analysis.

II. Perturbation in Constant Magnetic Field

Dirac propagator in external EM field,

[i6∂ − e 6A(x)−m]SF (x, x′) = δ4(x− x′),

is usually solved by perturbation from free propagator,

(i6∂ −m)S0
F (x, x′) = δ4(x− x′).

S0
F (x, x′) =

∫
d4yS0

F (x, y)[i
→
6∂y −e 6A(y)−m]SF (y, x′)

=
∫
d4yS0

F (x, y)[−i
←
6∂y −e 6A(y)−m]SF (y, x′)

= SF (x, x′)−
∫
d4yS0

F (x, y)e6A(y)SF (y, x′)

(using S0
F (x, y)(−i

←
6∂y −m) = δ4(x− y)) We can derive the perturbation formula by iteration.

SF (x, x′) = S0
F (x, x′) +

∫
d4yS0

F (x, y)e6A(y)S0
F (y, x′)

+
∫ ∫

d4y1d
4y2S

0
F (x, y1)e6A(y1)S

0
F (y1, y2)e6A(y2)S

0
F (y2, x

′) + · · · (2.1)

We try a simple case, massless propagator in uniform external magnetic field...

We know that the massless free propagator is

S0
F =

γ(x− x′)

2π2(x− x′)4
.

Assuming the vector potential to be

Aµ = (0, Bx(2), 0, 0)
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( Landau gauge for magnetic field in Z-direction) we can derive the first order correction for
SF from (2.1):

SF (x, x′) ≈ γ(x− x′)

2π2(x− x′)4
+

e

4π4
γµγνγ

ρ
∫
d4y

(x− y)µA
ν(y)(y − x′)ρ

(x− y)4(y − x′)4
(2.2)

Let’s calculate the integral that would appear when A is in first order of y:∫
d4y

(x− y)µyν(y − x′)ρ

(x− y)4(y − x′)4
=

∫
d4y

(l − y)µ(y + x′)νyρ

(l − y)4y4

where l ≡ x− x′, y → y + x′. Use the Feynman formulas,

1

ab
=

∫ 1

0
dθ

1

[aθ + b(1− θ)]2

1

a2b2
=

∂2

∂a∂b

1

ab
=

∫ 1

0
dθ

6θ(1− θ)

[aθ + b(1− θ)]4
,

to combine the denominator.

1

(l − y)4y4
=

∫ 1

0
dθ

6θ(1− θ)

[(l − y)2θ + y2(1− θ)]4
=

∫ 1

0
dθ

6θ(1− θ)

[(y − θl)2 + l2θ(1− θ)]4

Make a change of variable: y → y + θl. The integral becomes∫ 1

0
dθ 6θ(1− θ)

∫
d4y

(l − y)µ(y + x′)νyρ

[y2 + l2θ(1− θ)]4
.

Expand the numerator and integrate separately. Because of the null results from the integra-
tions of odd functions, the only terms remain are

Q ≡
∫
d4y

1

[y2 + l2θ(1− θ)]4

Pµν ≡
∫
d4y

yµyν

[y2 + l2θ(1− θ)]4

= gµνP.

The integration becomes∫ 1

0
dθ 6θ(1− θ)[(1− θ)lµPνρ − (x′ + θl)νPµρ − θlρPµν + (1− θ)lµ(x′ + θl)νθlρQ]

To integrate P, Q , we must rotate the contour of y0 integral. We should notice that the poles
selection in Feynman propagator is equivalent to the rotation of integration contour of p0 into
−i∞ → i∞. Therefore, to keep p · x invariant, we must rotate y0 integral into i∞ → −i∞.
That is, replace y0 by y4 = iy0 ∫

d4y → −i
∫
d4y

y2 = y2
0 − y2

1 − y2
2 − y2

3 → −y2 = −y2
1 − y2

2 − y2
3 − y2

4
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By letting c = l2θ(1− θ), we get

Pµ
µ = 4P = i

∫
d4y

y2

(y2 − c)4

= i
∫
r3dr sin2 θ1dθ1 sin θ2dθ2dθ3

r2

(r2 − c)4

= i2π2
∫ ∞
0

dr
r5

(r2 − c)4
= iπ2

∫ ∞
0

dr2 r4

(r2 − c)4

= iπ2
∫ ∞
−c

dr
(r + c)2

(r − c)4
, r2 − c→ r

=
−iπ2

3c

P =
−iπ2

12c

In a similar way, we find

Q =
−iπ2

6c2

and ∫
d4y

(x− y)µyν(y − x′)ρ

(x− y)4(y − x′)4

=
∫ 1

0
dθ 6θ(1− θ)

{
[(1− θ)lµgνρ − (x′ + θl)νgµρ − θlρgµν ]

−iπ2

12l2θ(1− θ)

−(1− θ)lµ(x′ + θl)νθlρ
iπ2

6l4θ2(1− θ)2

}
=

−iπ
4(x− x′)4

{
[(x− x′)µgνρ − (x+ x′)νgµρ − (x− x′)ρgµν ](x− x′)2

+2(x− x′)µ(x+ x′)ν(x− x′)ρ

}
.

Substitute the actual A and the above result into (2.2)

SF (x, x′) ≈ S0
F +

eB

4π4
γµγ1γ

ρ
∫
d4y

(x− y)µy
(2)(y − x′)ρ

(x− y)4(y − x′)4

= S0
F −

eBi

(4π)2(x− x′)4
γµγ1γ

ρ{[(x− x′)µg
2
ρ − (x+ x′)νgµρ

−(x− x′)ρg
2
µ](x− x′)2 + 2(x− x′)µ(x+ x′)(2)(x− x′)ρ}

= S0
F −

eBi

(4π)2(x− x′)4
{(x− x′)2[(γµγ1γ

2 − γ2γ1γ
µ)(x− x′)µ + 2γ1(x+ x′)(2)]

+4(x− x′)1(x+ x′)(2)γµ(x− x′)µ − 2γ1(x+ x′)(2)(x− x′)2}.

Use the anticommutators of γ,

γ2γ1γ
µ = 2γ2gµ

1 − γ2γµγ1 = 2γ2gµ
1 − g2µγ1 − γµγ2γ1.
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We move γ(x− x′) ahead and get

SF (x, x′) ≈ γ(x− x′)

2π2(x− x′)4
− ieBγ(x− x′)(x− x′)1(x+ x′)(2)

4π2(x− x′)4
+

ieB[γ2(x− x′)1 − γ1(x− x′)(2)]

8π2(x− x′)2
+
ieBγ(x− x′)[γ2, γ1]

16π2(x− x′)2

after substitutions and reductions. This is the first order propagator of massless Dirac particle
in constant magnetic field!

III. Proper Time Method

Proper time method is used to solve the linear differential equations for Green’s functions,
that is, the propagators of physical systems. The Green’s function, G(x, x′), of a linear
differential operator, H(x, i∂), satisfies

H(x, i∂)G(x, x′) = δ(x− x′).

We can regard G(x, x′) as the matrix element of an operator

G(x, x′) = 〈x|G|x′〉

and introduce position operator, 〈x|x|x′〉 = xδ(x − x′), and momentum operator,〈x|p|x′〉 =
i∂δ(x − x′) = −i∂′δ(x − x′). ( Space-time coordinates become a hermitian operator with
eigenstate |x〉 satisfying 〈x|x′〉 = δ(x− x′) ).

The original equation becomes the x-representation of the operator equation,

H(x, p)G = 1.

Our job becomes to solve for the matrix elements of the inverse operator of H(x, p).

For we not knowing the matrix element of H(x, p)−1, we are trying to represent it by
other operators that we have known their matrix element. For instance,

G = (6p− e 6A−m)−1 = ( 6p−m)−1[1− e 6A (6p−m)−1]−1

= (6p−m)−1
∞∑

n=0

[e 6A (6p−m)−1]n

= (6p−m)−1 + (6p−m)−1e 6A (6p−m)−1 + (6p−m)−1e 6A (6p−m)−1e 6A (6p−m)−1 + · · ·

where the matrix element of ( 6p−m)−1 is just the free propagator of electron and the matrix
multiplication is just the volume integral of space-time coordinates. This results in the well
known perturbation method!

The proper time method is using the transformation formula,

i
∫ ∞
0
e−iAs ds = i(−iA)−1e−iAs

∣∣∣∣s=∞
s=0

= A−1, (3.1)
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to represent H(x, p)−1 with exp[−iH(x, p)s], solving the matrix element and integrating with
respect to s to furnish G(x, x′). We call exp[−iH(x, p)s] the evolution operator, U(s), of the
“Proper Time”, s. The definitions of the proper time evolutions for general operators and
states are:

U(s) ≡ e−iH(x,p)s

O(s) ≡ U−1(s)OU(s)

|ϕ(s)〉 ≡ U−1(s)|ϕ〉

We can proof the following formulas:

H[x(s), p(s)] = U−1(s)H(x, p)U(s) = H(x, p)

i
∂

∂s
U(s) = H(x, p)U(s)

∂

∂s
O(s) = iH(x, p)U−1(s)OU(s)− U−1(s)OiH(x, p)U(s) = i[H(x, p),O(s)]

[p(s), x(s)] = U−1(s)[p, x]U(s) = ig
lim
s→0

〈x|U(s)|x′〉 = 〈x|x′〉 = δ(x− x′)

〈x|U(s)|x′〉 = 〈x(s)|x′(0)〉

(3.2)

If we can use these formulas to represent p(s) with x(s) and x(0) and arrange H[x(s), p(s)]
into a polynomial, F [x(s), x(0); s], where x(s) goes before x(0), we can get the equation that
the matrix element of the evolution operator must satisfy:

i
∂

∂s
〈x(s)|x′(0)〉 = 〈x(s)|H[x(s), p(s)]|x′(0)〉 = 〈x(s)|F [x(s), x(0); s]|x′(0)〉

= F (x, x′; s)〈x(s)|x′(0)〉 (3.3)

Integrate it into

〈x(s)|x′(0)〉 = exp [− i
∫ s

ds′F (x, x′; s′)]C(x, x′), (3.4)

use the foregoing conditions to fix C(x, x′) and what remains is the integration with respect
to the proper time ‘s’:

G(x, x′) = 〈x|H(x, p)−1|x′〉 = i
∫ ∞
0
ds〈x|e−H(x,p)s|x′〉

= i
∫ ∞
0
ds〈x(s)|x′(0)〉

IV. Dirac Propagator in External EM Field

The Dirac field equations and commutator is

(i6∂ − e 6A−m)ψ = 0,

ψ̄(−i
←
6∂ −e 6A−m) = 0,

{ψ(x, t), ψ̄(x′, t)} = γ0δ(x− x′), (4.1)
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and the Feynman propagator of Dirac field is

SF (x, x′) = i〈0|T (ψ(x)ψ̄(x′))|0〉
= iθ(x0 − x′0)〈0|ψ(x)ψ̄(x′)|0〉 − iθ(x′0 − x0)〈0|ψ̄(x′)ψ(x)|0〉

θ(x) ≡
{

1, x > 0
0, x ≤ 0

According to (4.1), we know it’s a Green’s function of Dirac equation:

(i6∂ − e 6A−m)SF (x, x′) = γ0〈0|{ψ(x), ψ̄(x′)}|0〉δ(x0 − x′0),

= δ(x− x′);

In the case of free field, we can get it by differential of scaler propagator:

SF (x, x′) = −(i6∂ +m)G(x, x′)

= −(i6∂ +m)
−1

(2π)4

∫
d4p

1

p2 −m2 + iε
e−ip·(x−x′) (4.2)

The purpose of the ε here is to select the correct pole ( The pole is p = −m for t > t′ and
p = m for t < t′ ) to meet the requirement of time ordering.

Of cause, we can let U(s) = exp[−i 6π] to calculate the propagator G = (6π − m)−1 in
external EM field. ( where π = p− eA ) But, in this manner, we are unable to represent p(s)
( or π(s) ) in terms of x(s) and x(0)! Just as the free propagator , we come to the matrix
element of G = [(m − 6π)(m + 6π)]−1 = (m2 − 6π2)−1 (just like the scaler propagator above )
than apply −(6π +m) on G(x, x′) to get the desired result.

We define the H and reduce the γ matrix.

6π2 = γµγνπµπν = γνγµ(πµπν − [πµ, πν ]) =
1

2
{γµ, γν}πµπν −

1

2
γνγµ[πµ, πν ]

= π2 − −1

4
[γµ, γν ][πµ, πν ]

= π2 − e

2
σµνF

µν

H ≡ m2 − 6π2 = m2 +
e

2
σµνF

µν − π2

using σµν ≡ i
2
[γµ, γν ] and [πµ, πν ] = [i∂µ − eAµ, i∂ν − eAν ] = −ieFµν . ( We define H as

m2 − 6π2 instead of 6π2 −m2 because of the unwritten iε following the m2(refer to (4.2)). In
such arrangement, e−iHs will approach zero under the transformation of (3.1) as s→∞!) By
the formula (3.2), we can get the equation of motion.

d

ds
xµ(s) = i[H, xµ(s)] = −i[π2(s), xµ(s)]

= −iπν(s)[πν(s), xµ(s)]− i[πν(s), xµ(s)]πν(s) = −iπν(s)igνµ − iigν
µπν(s)

= 2πµ(s) (4.3)
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d

ds
πµ(s) = i[H, πµ(s)] = i[−π2(s) +

e

2
σνρF

νρ[x(s)], πµ(s)]

= −iπν(s)[πν(s), πµ(s)]− i[πν(s), πµ(s)]πν(s) +
ie

2
σνρ[F

νρ[x(s)], πµ(s)]

= eπν(s)Fµν [x(s)] + eFµν [x(s)]π
ν(s) +

e

2
σνρ∂µFνρ[x(s)]

= 2eFµν [x(s)]π
ν(s)− [eFµν [x(s)], π

ν(s)] +
e

2
σνρ∂µFνρ[x(s)]

= 2eFµν [x(s)]π
ν(s) + ie∂νFµν [x(s)] +

e

2
σνρ∂µFνρ[x(s)] (4.4)

By using these equations, we can represent H in terms of x(s), x(0) in some cases and
construct more convenient conditions for C(x, x′) from (3.2).

[i∂x − eA(x)]〈x(s)|x′(0)〉 = 〈x(s)|π(s)|x′(0)〉
[−i∂x′ − eA(x′)]〈x(s)|x′(0)〉 = 〈x(s)|π(0)|x′(0)〉. (4.5)

The Dirac propagator becomes

SF (x, x′) = −[i6∂ − e 6A(x) +m]i
∫ ∞
0
ds〈x(s)|x′(0)〉

−i
∫ ∞
0
ds[〈x(s)|π(s)|x′(0)〉+m〈x(s)|x′(0)〉] (4.6)

V. Constant Field

In the case of constant field, (4.3) and (4.4) reduce to

d

ds
x(s) = 2π(s),

d

ds
π(s) = 2eFπ(s)

We skiped the summation index between tensors of rank two or rank one.( That is, regard
them as four dimensional matrixes and column or row vectors. See appendix.) We can get

π(s) = e2eFsπ(0)

x(s)− x(0) =
e2eFs − 1

eF
π(0)

(5.1)

from the equations of motion. Therefore,

π(s) =
eF eeFs

2 sinh(eFs)
[x(s)− x(0)]. (5.2)

Because F is antisymmetry, we have

π2(s) =
1

4
[x(s)− x(0)]

−eF e−eFs

2 sinh(−eFs)

eF eeFs

2 sinh(eFs)
[x(s)− x(0)]

= [x(s)− x(0)]K[x(s)− x(0)]
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where K ≡ 1
4
(eF )2 sinh−2(eFs). Use the commutator,

[xµ(s), xν(0)] =
[(
e2eFs − 1

eF

)
µ

ρ

πρ(0) + xµ(0), xν(0)
]

=
(
e2eFs − 1

eF

)
µ

ρ

[πρ(0), xν(0)] =
(
e2eFs − 1

eF

)
µ

ρ

igρµ

= i
(
e2eFs − 1

eF

)
µν
,

to move x(s) ahead of x(0).

Kµν [xν(s), xµ(0)] = itr
(

(eF )2

4 sinh2(eFs)

e2eFs − 1

eF

)
= itr

(
eF

2

eeFs + e−eFs

eeFs − e−eFs
+

eF

2

)
=

i

2
tr[eF coth(eFs)]

π2(s) = Kµν [xµ(s)xν(s) + xµ(0)xν(0)− xµ(s)xν(0)− xµ(0)xν(s)]

= Kµν [xµ(s)xν(s) + xµ(0)xν(0)− 2xµ(s)xν(0)] +
i

2
tr[eF coth(eFs)]

We used the conditions that K is symmetric and F is traceless. Use them to represent H.

H = m2 +
e

2
(σ · F )− x(s)Kx(0) + 2x(s)Kx(0)− x(0)Kx(0)− i

2
tr[eF coth(eFs)]

This is just the F (x(s), x(0); s) in (3.3). We can derive

〈x(s)|x′(0)〉 = C(x, x′) exp [− i
∫ s

ds′F (x, x′; s′)]

= C(x, x′) exp
(
− i

∫ s

ds
{
m2 +

e

2
(σ · F )− (x− x′)K(x− x′)

− i
2
tr[eF coth(eFs)]

})
= C(x, x′) exp

{
− im2s− i

e

2
(σ · F )s+ i(x− x′)

∫ s

ds
(eF )2

4 sinh2(eFs)
(x− x′)

−1

2
tr

∫ s

ds[eF coth(eFs)]
}

= C(x, x′) exp
{
− im2s− i

e

2
(σ · F )s− i

4
(x− x′)eF coth(eFs)(x− x′)

−1

2
tr[ln

sinh(eFs)

eFs
+ ln s]

}
=

1

s2
C(x, x′) exp

{
− 1

2
tr ln

sinh(eFs)

eFs
− i

4
(x− x′)eF coth(eFs)(x− x′)

−im2s− i
e

2
(σ · F )s

}
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from (3.4). Substituting (5.1) and (5.2) into the first equation of (4.5), we get the equation
which C(x, x′) satisfies:

[i∂x − eA(x)]C(x, x′) exp [− i

4
(x− x′)eF coth(eFs)(x− x′) + · · ·]

= − eF eeFs

2 sinh(eFs)
(x− x′)C(x, x′) exp [− i

4
(x− x′)eF coth(eFs)(x− x′) + · · ·]

⇒ [i∂x − eA(x) +
eF eeFs

2 sinh(eFs)
]C(x, x′) exp [− i

4
(x− x′)eF coth(eFs)(x− x′)] = 0

⇒ [i∂x − eA(x) +
eF eeFs

2 sinh(eFs)
+

1

2
eF coth(eFs)(x− x′)]C(x, x′) = 0

⇒ [i∂x − eA(x)− eF

2
(x− x′)]C(x, x′) = 0

(mist. “· · ·” is the part independent of x). Similarly we can substitute them into the second
equation of (4.5):

[−i∂x′ − eA(x′) +
eF

2
(x− x′)]C(x, x′) = 0

Use them to fix C(x, x′):

C(x, x′) = C exp
{
− ie

∫ x

x′
dξ[A(ξ) +

1

2
F (ξ − x′)]

}
C can be fixed by using the fifth equation in (3.2). As s→ 0,

〈x(s)|x′(0)〉 =
C

s2
exp

{
− ie

∫ x

x′
dξ[A(ξ) +

1

2
F (ξ − x′)]− 1

2
tr ln

sinh(eFs)

eFs

− i
4
(x− x′)eF coth(eFs)(x− x′)− im2s− i

e

2
(σ · F )s

}
→ C

s2
exp [− i(x− x′)2

4s
].

Because this should become δ-function, we have

1 =
∫
d4x

C

s2
exp [− i(x− x′)2

4s
]

=
C

s2
· 1− i√

2

√
4πs · (1 + i√

2

√
4πs)3

= i(4π)2C

and C = −i(4π)−2. So,

〈x(s)|x′(0)〉 =
−i

(4π)2s2
exp

{
− ie

∫ x

x′
dξ[A(ξ) +

1

2
F (ξ − x′)]− 1

2
tr ln

sinh(eFs)

eFs

− i
4
(x− x′)eF coth(eFs)(x− x′)− im2s− ie

2
(σ · F )s

}
. (5.3)
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If we restrict the integration along straight line, we have
∫
dξ[A(ξ) + 1

2
F (ξ − x′)] =

∫
dξA(ξ)

and

SF = −(i6∂ − e 6A+m)i
∫ ∞
0
ds〈x(s)|x′(s)〉 (5.4)

= −i
∫ ∞
0
ds〈x(s)|(6π +m)|x′(s)〉

= −i
∫ ∞
0
ds

[
γ

eF eeFs

2 sinh(eFs)
(x− x′) +m

]
〈x(s)|x′(s)〉 (5.5)

If it is integrable, we’ll get the exact solution in constant field!

VI. Plane Wave

In plane wave field, we assume the vector potential of the external field is

Aµ = εµf(ξ),

where ξ = n · x, n2 = 0 and n is the propagating direction of the wave and ε2 = −1 is the
polarization direction. The field tensor is

F = φf ′(ξ), φµν = nµεν − nνεµ,

We know n · ε = 0 from Maxwell equation so we have φµ
νφ

ν
ρ = nµnρ and the equations of

motion reduce to

d

ds
x(s) = 2π(s)

d

ds
π(s) = 2eφπ(s)f ′(ξ(s)) +

e

2
n(σ · φ)f ′′(ξ(s))

We can derive

d

ds
[nπ(s)] = 0 ⇒ nπ(s) = nπ(0) = nπ

d

ds
ξ(s) = 2nπ(s) ⇒ ξ(s)− ξ(0) = 2nπs

d

ds
[φπ(s)] = 2en(nπ)f ′[ξ(s)] = ne

dξ(s)

ds
f ′[ξ(s)] = ne

d

ds
f [ξ(s)]

⇒ d

ds
{φπ − nef [ξ(s)]} = 0, C ≡ φπ − nef [ξ(s)]

⇒ nC = 0, φC = φφπ = n(nπ), C2 = πφφπ = (nπ)2

and the commutators

[ξ, nπ] = [nx, nπ] = in2 = 0
[ξ(s), ξ(0)] = [ξ(s), ξ(s)− 2nπs] = 0

[x(s)− x(0), nπ] = [x(s), nπ(s)]− [x(0), nπ(0)] = 0
[x(s)− x(0), ξ(s)− ξ(0)] = 0

[C, nπ] = [φπ, nπ] = 0
[ξ(0), x(s)] = [ξ(s)− 2nπ(s)s, x(s)] = −2ins

(6.1)
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We can integrate out π by using C to eliminate the φπ in the equations of motion.

dπ(s)

ds
= 2e{C + nef [ξ(s)]}f ′[ξ(s)] +

d

dξ(s)
{e

2
n(σ · φ)f ′[ξ(s)]}

=
d

dξ(s)
{2eCf [ξ(s)] + ne2f 2[ξ(s)] +

e

2
n(σ · φ)f ′[ξ(s)]},

d

dξ(s)
=

1

2nπ

d

ds

⇒π(s) =
1

2nπ
{2eCf [ξ(s)] + ne2f 2[ξ(s)] +

e

2
n(σ · φ)f ′[ξ(s)]}+D (6.2)

With π, we can integrate out x from the equations of motion:

x(s)− x(0) =
1

2(nπ)2

∫ ξ(s)

ξ(0)
dζ[2eCf(ζ) + ne2f 2(ζ) +

e

2
n(σ · φ)f ′(ζ)] + 2Ds (6.3)

( where we convert the s integration into ζ = ξ(s) integration ) Conversely we can also
eliminate D in π and represent nπ in terms of [ξ(s)− ξ(0)]/s:

π(s) =
x(s)− x(0)

2s
− s

[ξ(s)− ξ(0)]2

∫ ξ(s)

ξ(0)
dζ[2eCf(ζ) + e2nf 2(ζ) +

e

2
n(σ · φ)f ′(ζ)]

+
s

ξ(s)− ξ(0)
{2eCf [ξ(s)] + e2nf 2[ξ(s)] +

e

2
n(σ · φ)f ′[ξ(s)]} (6.4)

At the same time, C can also be expressed as

C =
φ[x(s)− x(0)]

2s
− en

ξ(s)− ξ(0)

∫ ξ(s)

ξ(0)
dζf(ζ) (6.5)

Next work is to square π and arrange x(s) ahead of x(0). (ξ(s) and ξ(0) are commute at this
time so we can ignor their ordering.) n2 = 0 and Cn = 0 make many terms vanish. x(0) can
be expressed in terms of x(s), π(s), ξ(s) and ξ(0) by (6.4). x(s) commute with ξ(s) and has a
eliminated communicator which has n factor with ξ(0) so

[x(s), x(0)] = [x(s),−2sπ(s)] = 8is

After calculation, H becomes

H =
−1

(2s)2
[x2(s)− 2x(s)x(0) + x2(0)]− 2i

s
+ e2〈δf 2〉+m2 +

e

2
(σ · φ)

f [ξ(s)]− f [ξ(0)]

ξ(s)− ξ(0)

and

〈δf 2〉 =
∫ ξ(s)

ξ(0)
dζ

f 2(ζ)

ξ(s)− ξ(0)
−

[ ∫ ξ(s)

ξ(0)
dζ

f(ζ)

ξ(s)− ξ(0)

]2

where beside eliminating n2 and Cn we also substitute and reduce C with (6.5). Using

[x(s)− x(0)]φ[x(s)− x(0)] = [x(s)− x(0)]µ(nµε
ν − εµn

ν)[x(s)− x(0)]ν

= ε[ξ(s)− ξ(0), x(s)− x(0)] = 0,
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∫ ξ(s)

ξ(0)
dζf ′(ζ) = f [ξ(s)]− f [ξ(0)]

and (3.3), we derived the equations 〈x(s)|x′(0)〉 satisfies and integrate out

〈x(s)|x′(0)〉 =
C(x, x′)

s2
exp

{
− i(x− x′)2

4s
− i[e2〈δf 2〉+m2 +

e

2
(σ · φ)

f(ξ)− f(ξ′)

ξ − ξ′
]s

}
where

〈δf 2〉 =
∫ ξ

ξ′
ζ
f 2(ζ)

ξ − ξ′
−

[ ∫ ξ

ξ′
ζ

f(ζ)

ξ(s)− ξ(0)

]2

.

To fix C(x, x′), first we have

〈x(s)|π(s)|x′(0)〉 =
x− x′

2s
− s

(ξ − ξ′)2

∫ ξ

ξ′
dζ[2eCf(ζ) + e2nf 2(ζ) +

e

2
n(σ · φ)f ′(ζ)]

+
s

ξ − ξ′
[2eCf(ξ) + e2nf 2(ξ) +

e

2
n(σ · φ)f ′(ξ)]

C =
φ(x− x′)

2s
− en

ξ − ξ′

∫ ξ

ξ′
dζf(ζ)

∂x〈x(s)|x′(0)〉 = [∂xC(x, x′)]
1

s2
exp{· · ·}+ C(x, x′)

1

s2
exp{· · ·}(−i)

{
x− x′

2s

+se2
[(ξ − ξ′)f 2(ξ)n− n

∫ ξ
ξ′dζf

2(ζ)

(ξ − ξ′)2
− 2

( ∫ ξ

ξ′
dζ

f(ζ)

ξ − ξ′

)(ξ − ξ′)f(ξ)n− n
∫ ξ
ξ′dζf(ζ)

(ξ − ξ′)2

]

+se
σ · φ

2

(ξ − ξ′)f ′(ξ)n− n[f(ξ)− f(ξ′)]

(ξ − ξ′)2

}
.

Most terms in it will cancel out each other after substituting into the first equation of (4.5).
The equation that C(x, x′) satisfies is{

i∂x − eA(x) +
eφ(x− x′)

(ξ − ξ′)

[ ∫ ξ

ξ′
dζ

f(ζ)

(ξ − ξ′)
− f(ξ)

]}
C(x, x′) = 0.

If we let s = 0 in (6.2) and eliminate D by (6.3), we get

π(0) =
x(s)− x(0)

2s
− s

[ξ(s)− ξ(0)]2

∫ ξ(s)

ξ(0)
dζ[2eCf(ζ) + e2nf2(ζ) +

e

2
n(σ · φ)f ′(ζ)]

+
s

ξ(s)− ξ(0)
{2eCf [ξ(0)] + e2nf2[ξ(0)] +

e

2
n(σ · φ)f ′[ξ(0)]}

Similarly, we will get another equation by substituting into the second equation of (4.5).{
− i∂x′ − eA(x′)− eφ(x− x′)

(ξ − ξ′)

[ ∫ ξ

ξ′
dζ

f(ζ)

(ξ − ξ′)
− f(ξ′)

]}
C(x, x′) = 0

So, we have

C(x, x′) = C exp
(
− ie

∫ x

x′
dy

{
A(y)− φ(y − x′)

n · y − ξ′

[ ∫ n·y

ξ′
dζ

f(ζ)

n · y − ξ′
− f(n · y)

]})
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where C can be fixed by δ-function condition as in constant field case. The integral would
reduce to

∫
dyA(y) if we restricted it on straight line. The final result is

〈x(s)|x′(0)〉 =
−i

(4π)2s2
exp

{
− ie

∫ x

x′
dy A(y)− i(x− x′)2

4s

−i[e2〈δf 2〉+m2 +
e

2
(σ · φ)

f(ξ)− f(ξ′)

ξ − ξ′
]s

}
From (4.6), the Dirac propagator is

SF = −i
∫ ∞
0
ds

[
γ

(
x− x′

2s
− s

(ξ − ξ′)2

∫ ξ

ξ′
dζ[2eCf(ζ) + e2nf 2(ζ) +

e

2
n(σ · φ)f ′(ζ)]

+
s

ξ − ξ′
[2eCf(ξ) + e2nf 2(ξ) +

e

2
n(σ · φ)f ′(ξ)]

)
+m

]
〈x(s)|x′(0)〉

(6.6)

VII. Expansion With Respect To e

After above result, we’re ready to integrate the last integral to complete the solution.
The first ideal is to match with the known result in limiting case. Let m = 0, e = 0:

SF = −i6∂i
∫ ∞
0
ds

−i
(4π)2s2

exp
−i(x− x′)2

4s
= −i6∂ 1

(4π)2
× −4

i(x− x′)2
exp

−i(x− x′)2

4s

∣∣∣∣s=∞
s=0

= −i6∂ −i
(2π)2(x− x′)2

=
γ(x− x′)

2π2(x− x′)4

Now we turn to constant field. We know the integral can be integrated when m = 0 and e = 0
so we try to expand it with respect to e and see if we can integrate it term by term. The result
turns out to be that each order in the expansion of e has the form as s−2 exp[i(x − x′)2/4s]
multiplied by polynomials in s:

U(e) ≡ 〈x(s)|x′(0)〉|m=0

U(e) =
∞∑

n=0

en

n!

∂nU(e)

∂en

∣∣∣∣
e=0

= U(0) + e
∂U

∂e
|e=0 +

e2

2!

∂2U

∂e2
|e=0 + · · ·

U(0) =
−i

(4π)2s2
exp

−i(x− x′)2

4s
∂U

∂e
= U(e)

{
− i

∫ x

x′
dξA(ξ)− 1

2
tr(Fs

∂ ln[(eFs)−1 sinh(eFs)]

∂(eFs)
)− i

2
(σ · F )s

− i

4s
(x− x′)Fs

∂ eFs coth(eFs)

∂(eFs)
(x− x′)

}
(7.1)

Or, by expansion formula,

ln
sinh x

x
= 1

6
x2 − 1

180
x4 + 1

2835
x6 + · · ·

x cothx = 1 + 1
3
x2 − 1

45
x4 + 2

945
x6 + · · · ,
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we find

U ′(0) = U(0)
[
− i

∫ x

x′
dξA(ξ)− i

2
(σ · F )s

]
U ′′(0) = U(0)

[
− i

∫ x

x′
dξA(ξ)− i

2
(σ · F )s

]2

+ U(0)[
−s2

6
trF 2 − is

6
(x− x′)F 2(x− x′)].

Arrange in the order of s.

U ′′(0) = U(0)
{
−

[ ∫ x

x′
dξA(ξ)

]2

−
[
(σ · F )

∫ x

x′
dξA(ξ) +

i

6
(x− x′)F 2(x− x′)

]
s

−[
1

6
trF 2 +

1

4
(σ · F )2]s2

}
We now read the result of first order from (5.4).

SF ≈ −(i6∂ − e 6A)i
∫ ∞
0
ds[U(0) + eU ′(0)]

= −(i6∂ − e 6A)
1

(4π)2

{
I0 − ie

[ ∫ x

x′
dξA(ξ)

]
I0 −

ie

2
(σ · F )I1

}
where we factor out the integral in s and symbolize it as In

In ≡
∫ ∞
0
ds sn−2e−iαs−1

, α ≡ (x− x′)2

4

I0 =
1

iα
=

4

i(x− x′)2

∂

∂(−iα)
I1 = I0 ⇒ I1 = lnα+ C1

Substitute them into SF :

SF ≈ −(i6∂ − e 6A)i
{ −i

(2π)2(x− x′)2

[
1− ie

∫ x

x′
dξA(ξ)

]
− e

2(2π)2
(σ · F )[ ln

−(x− x′)2

4
+ C1]

}
Differential it and calculate up to the first order of e:

SF ≈
γ(x− x′)

2π2(x− x′)4

[
1− ie

∫ x

x′
dξA(ξ)

]
+
ieγF (x− x′)

8π2(x− x′)2
+
γ(x− x′)e(σ · F )

16π2(x− x′)2

To compare this result with the perturbational one we make Aµ = (0, Bx(2), 0, 0) =
gµ
1Bx

(2) in the above equation. This result in

Fµ
ν = ∂µA

ν − ∂νAµ = Bg2
µg

ν
1 −Bgν2gµ1∫ x

x′
dξA(ξ) =

B

2
(x− x′)1(x+ x′)(2).

After reduction:

SF ≈ γ(x− x′)

2π2(x− x′)4
− ieBγ(x− x′)(x− x′)1(x+ x′)(2)

4π2(x− x′)4

+
ieB[γ2(x− x′)1 − γ1(x− x′)(2)]

8π2(x− x′)2
+
ieBγ(x− x′)[γ2, γ1]

16π2(x− x′)2

– 16 –



VIII. Divergent Integral and Infinite Constant

From above discussion, we know that each order of this expansion can be reduced to the
linear combination of finite number of In’s, (n = 0, 1, · · ·). Theoretically, we can integrate
out this order by order. But we find that these integrals are all divergent start from I1. We
can get the first order result just because we only use the differential of I1 and while I1 is
infinite its differential is finite. This give us an ideal to put the infinite part in the integration
constants and write the result with these constants.

Define the infinite constants,

Cn ≡
∫ ∞
0
ds sn−2 exp

−i
s
.

We now represent In with α and Cn.

∂

∂(−iα)
In = In−1 = f(α) ⇒ In = −i

∫ α

f(α) = F (α) + Const.

In|α=1 = F (1) + Const. = Cn

⇒ In = F (α)− F (1) + Cn

For instance,

I2 = −i
∫ α

(lnα+ C1) = −i(α lnα− α+ C1α) + i(C1 − 1) + C2.

According to the equality in (7.1), the second order propagator is

SF ≈ −(i6∂ − e 6A)
−i

(4π)2

{[
1− ie

∫ x

x′
dξA(ξ)− e2

2

( ∫ x

x′
dξA(ξ)

)2]
I0

−
[
ie

2
(σ · F )

(
1− ie

∫ x

x′
dξA(ξ)

)
+
ie2

12
(x− x′)F 2(x− x′)

]
I1 −

e2

2
[
1

6
trF 2 +

1

4
(σ · F )2]I2

}
.

The result will be available after substituting I0, I1, I2 and perform the differentiation.

IX. Massive Free Propagator

For further calculations, we should derive the massive Feynman free propagator. Usually,
we use contour integral in complex variable and discuss the selection of right pole in (4.2) with
residue theory. Since we know that the proper time method has included the appropriate
boundary condition, we can directly integrate out the massive propagator from the proper
time result.

Let e = 0 in (5.3). We find (5.4) becomes

SF = −(i6∂ +m)GF

= −(i6∂ +m)i
∫ ∞
0
ds

−i
(4π)2s2

exp [− i(x− x′)2

4s
− im2s].
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The scaler propagator part is of the form:

I =
∫ ∞
0

ds

s2
e−iαs−1−iβs (9.1)

(We let α = (x− x′)2/4, β = m2 and multiply it by 1/(4π)2.)

After the change of variable,

s = ez ⇒ ds = ezdz.

s : 0 →∞ ⇒ z : −∞→∞,

the integral becomes

I =
∫ ∞
−∞

dz e−ze−iαe−z−iβez

= i
∂

∂α

∫ ∞
−∞

dz e−iαe−z−iβez

≡ i
∂

∂α
Ic.

We notice that the linear combination of ez and e−z is just the linear combination of cosh z
and sinh z.

⇒ Ic =
∫ ∞
−∞

dz e−iα(cosh z−sinh z)−iβ(cosh z+sinh z)

=
∫ ∞
−∞

dz e−i[(β+α) cosh z+(β−α) sinh z]

To combine cosh z and sinh z we discuss two cases.

Case I. For α > 0, let

cosh θ ≡ β + α√
(β + α)2 − (β − α)2

=
β + α

2
√
βα

sinh θ ≡ β − α

2
√
βα

then

Ic =
∫ ∞
−∞

dz e−i2
√

βα cosh(z+θ)

=
∫ ∞
−∞

dz e−i2
√

βα cosh z

= −πiH(2)
0 (2

√
βα)

= −πi[J0(2
√
βα)− iN0(2

√
βα)]

where J, N and H are the Bessel, Neumann and Hankel functions! (see appendix)
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Case II. For α < 0, let

cosh θ ≡ β − α√
(β − α)2 − (β + α)2

=
β − α

2
√
−βα

sinh θ ≡ β + α

2
√
−βα

.

Similarly,

Ic =
∫ ∞
−∞

dz e−i2
√
−βα sinh(z+θ)

=
∫ ∞
−∞

dz e−i2
√
−βα sinh z

= 2K0(2
√
−βα)

= πi[J0(i2
√
−βα) + iN0(i2

√
−βα)]

= πi[J0(2
√
βα) + iN0(2

√
βα)]

where K is the modified Bessel functions!

Combine these two cases.

Ic = −θ(α)πiH
(2)
0 (2

√
βα) + θ(−α)2K0(2

√
−βα)

= −iπε(α)J0(2
√
βα)− πN0(2

√
βα)

ε(x) ≡
{

1, x > 0
−1, x ≤ 0

Therefore,

I = i
∂

∂α
Ic = π

∂

∂α
[ε(α)J0(2

√
βα)− iN0(2

√
βα)]

= πδ(α)− π

√
β

α
[ε(α)J1(2

√
βα)− iN1(2

√
βα)]

(About the differential respect to x of Nn(
√
x), please refer to the appendix) We can substitute

α and β in it.

GF =
1

(4π)2

{
πδ(

(x− x′)2

4
)− 2πm√

(x− x′)2

[
ε(

(x− x′)2

4
)J1(m

√
(x− x′)2)

−iN1(m
√

(x− x′)2)
]}

=
1

4π
δ[(x− x′)2]− m

8π
√

(x− x′)2
{ε[(x− x′)2]J1(m

√
(x− x′)2)− iN1(m

√
(x− x′)2)}
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and the Dirac propagator is

SF = −i6∂
{

1

4π
δ[(x− x′)2]− m

8π
√

(x− x′)2
{ε[(x− x′)2]J1(m

√
(x− x′)2)

−iN1(m
√

(x− x′)2)}
}
−mGF

= γ(x− x′)
{
δ′[(x− x′)2]

2π
− m2δ[(x− x′)2]

8π
+
m2ε[(x− x′)2]

8π(x− x′)2
J2(m

√
(x− x′)2)

− im2

8π(x− x′)2
N2(m

√
(x− x′)2)

}
−mGF

The discussions of the δ-functions that appear in above result or whether Ic is defined
when α is zero are presented in appendix.

X. The Similarity between Plane Wave Case and Massive Free Propagator

If we investigate the integral in plane wave case we’ll find that it is the same with massive
propagator except to substitute the β with

e2〈δf 2〉+m2 +
e

2
(σ · φ)

f(ξ)− f(ξ′)

ξ − ξ′

instead of m2. The only labor left is to apply −(i6∂ − e 6A+m) on it.

−(i6∂ − e 6A+m)
(
GF |m2→β

)
= −iγµ(∂µGF )|m2=β − iγµ

(
∂

∂m2
GF

)∣∣∣∣
m2=β

× ∂µβ + (e6A−m)
(
GF |m2=β

)

We can use (6.6) and the Ln integral in appendix to derive the result.

SF (x, x′) =
−1

(4π)2
exp

{
− ie

∫ x

x′
dyA(y)

}(
x− x′

2
L−1 +

1

ξ − ξ′

{
[2eCf(ξ) + e2nf2(ξ)

+
e

2
n(σ · φ)f ′(ξ)]− 1

ξ − ξ′

∫ ξ

ξ′
dζ[2eCf(ζ) + e2nf 2(ζ) +

e

2
n(σ · φ)f ′(ζ)]

}
L1 +mL0

)
(10.1)

where α and β are

α =
(x− x′)2

4

β = e2〈δf 2〉+m2 +
e

2
(σ · φ)

f(ξ)− f(ξ′)

ξ − ξ′

We skip further reductions.
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XI. The Result in Constant Field

We has known the massless propagator in constant field is divergent since second order.
After we worked out the integral I in massive propagator, we find the I0 in just I when β
goes to zero. From the ideal of Gaussian Integral, In can be derived by differentiating I with
respect to β for n times and letting β go to 0. Since we had represented the former result
with In, we simply replace In with Ln (see appendix) in which β is non-zero. Expand (5.5)
and use Ln to represent the result after integration.

exp
[
− ie

∫ x

x′
dξA(ξ)

]
= 1− ie

∫ x

x′
dξA(ξ)− e2

2
[
∫ x

x′
dξA(ξ)

]2

+ · · ·[
γ

eFeeFs

2 sinh(eFs)
(x− x′) +m

]

= m+
γ

2s
(x− x′) +

eγ

2
F (x− x′) +

e2sγ

6
F 2(x− x′) + · · ·

exp
[
− 1

2
tr ln

sinh(eFs)

eFs

]
= 1− e2s2

12
trF 2 + · · ·

exp
(
− ies

2
σ · F

)
= 1− ies

2
σ · F − e2s2

8
(σ · F )2 + · · ·

exp
[
− i

4
(x− x′)eF coth(eFs)(x− x′)

]
= exp

[
− i(x− x′)2

4s

][
1− ie2s

12
(x− x′)F 2(x− x′) + · · ·

]
We calculate to the second order of e. Multiplying these expansions and the factor

−i
(4π)2s2

exp
[
− i

4s
(x− x′)2 − im2s

]

SF is the integration with respect to s. We can write the result order by order.

Zero order:

− iγ

32π2
(x− x′)L−1 −

im

16π2
L0

First order:

− eγ

32π2
(x− x′)

[ ∫ x

x′
dξA(ξ)

]
L−1 −

ie

16π2

[
γ

2
F (x− x′)− im

∫ x

x′
dξA(ξ)

−iγ
4

(x− x′)(σ · F )
]
L0 −

em

32π2
(σ · F )L1
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Second order:
... (11.1)

The α and β in L’s are.

α =
(x− x′)2

4
β = m2

Beside the gauge factor term, we notice the higher order term in the e expansion has higher
order of s. That is, we must use higher order of Bessel function to expand the solution.

XII. Conclusion

Generally, we understand that we can approach the solution of the Dirac propagator in
external field by perturbation method from free propagator. The integrations are easier only
in massless cases and are explicitly integrable only for special external fields.

From the calculations and discussions here, we know that we can use proper time method
to calculate the Dirac propagator in external field analytically. We found that the solution
of massless propagator are divergent since second order. One the other hand, we found
the difference between massive free propagator and the result in plane wave fields is in the
substitutions of the mass term. That is, the propagator in plane wave fields is exactly solvable.
(See (10.1)).

For constant field, we can’t derive a close form solution but we can expand it with respect
to coupling constant ’e’ and solve it order by order. (See(11.1)) In the calculations, we know
every order is convergent and has the form of Bessel functions. It likes to expand the solution
by Bessel functions and this guarantees the series is convergent if the solution is smooth.

Appendix

A. Conventions

To reduce the using of notations, we are to explain some conventions here. First, we
discuss the contraction of tensor:

1. For rank two tensors A,B,C · · · ; and rank one tensors x, y, z

xy ≡ xµy
µ

x2 ≡ xµx
µ

AB · · ·Cx ≡ Aµ
ν1B

ν1
ν2 · · ·Cνn−1

νnx
νn

xAy ≡ xµA
µ

νy
ν

A ·B ≡ AµνB
µν
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2. If the function f can be expanded into polynomials or serials, we can define the matrix
function corresponding to the function of rank two tensor:

An ≡
n times︷ ︸︸ ︷
AA · · ·A

f(s) ≡
N or ∞∑

n=1

cns
n ⇒ f(A) ≡

N or ∞∑
n=1

cnA
n

B. Bessel Functions

The calculations in this report are highly related to Bessel functions. From ordinary text
books, we can find the following formulas for Bessel functions. ( Where Ωn can be Bessel,
Neumann, Modified Bessel or Hankel functions. )

Generating Equation

Jn(x) = (−1)nxn
(

d

x dx

)n

J0(x)

Recursive Formula

Ωn−1(x) + Ωn+1(x) =
2n

x
Ωn(x)

Ωn−1(x)− Ωn+1(x) = 2Ω′n(x)

Integral Transforming Formula

H0(x) =
i

π

∫ ∞
−∞

dze−ix cosh z

K0(x) =
1

2

∫ ∞
−∞

dze−ix sinh z

Expansions

Jn(x) =
∞∑

s=0

(−1)s

s!(s+ n)!

(
x

2

)n+2s

C. The Differential of Nn

Because Nn(
√
x) is complex function, we have to make more careful discussions of it’s

differential with respect to x at origin.
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We know that ln x is a function defined on positive real number with 1/x as it’s differ-
ential. While we continuously extend it over the whole complex plane, it is discontinue at the
origin. The amount of discontinuity while taking principle value is

ln ε− ln(−ε) = − ln(−1) = −iπ

but the integral of 1/x doesn’t reflect this. So, we have to modify the differential of ln x into

d

dx
lnx =

1

x
− iπδ(x).

The Nn(
√
x) expansion becomes ( refer to “Mathematical Methods for Physics” by Arfken )

Nn(
√
x) =

1

π
Jn(

√
x) ln

x

4
− 1

π

∞∑
r=0

(−1)r

r!(n+ r)!
(
x

4
)

n
2
+r[F(r) + F(n+ r)]

− 1

π

n−1∑
r=0

(n− r − 1)!

r!
(
x

4
)−

n
2
+r

Only the principle value of ln has discontinuity at origin so the modification term we have to
add is −iJn(

√
x)δ(x)

That is,

d

dx
Nn(

√
x) =

√
x

4
[Nn−1(

√
x)−Nn+1(

√
x)]− iJn(

√
x)δ(x).

This formula was used above while taking the integral of I and solving Dirac propagator by
differentiation to derive correct factor of δ-function. (We surely can cover the δ-function by
redefining Nn but this results in a different form of solution from most text books.)

**If we define
Sn(

√
x) ≡ θ(−x)Jn(

√
x) + iNn(

√
x),

the δ-function resulting from the differentiation of the θ-function will just cancel that of Nn.

d

dx
Sn(

√
x) =

1

4
√
x

[Sn−1(
√
x)− Sn+1(

√
x)]

It has no δ-function here!

D. Ln Integral

If we didn’t let m = 0 in above expansion for constant field, we would have the integral,

Ln ≡
∫ ∞
0
ds sn−2e−iαs−1−iβs

= in
∂n

∂βn
I

= in
∂n

∂βn

{
πδ(α)− π

√
β

α
[ε(α)J1(2

√
βα)− iN1(2

√
βα)]

}
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Let’s assume α 6= 0, β > 0 and calculate some Ln’s

L0 = −π
√
β

α
[ε(α)J1(2

√
βα)− iN1(2

√
βα)]

L1 =
−iπ

2
√
βα

[ε(α)J1(2
√
βα)− iN1(2

√
βα)]− iπ[ε(α)J ′1(2

√
βα)− iN ′1(2

√
βα)]

= −iπ[ε(α)J0(2
√
βα)− iN0(2

√
βα)]

L2 = −π
√
α

β
[ε(α)J1(2

√
βα)− iN1(2

√
βα)]

...

After observing the leading Ln’s, we can proof the general form:

Ln = (−i)nπ
(√

α

β

)n−1

[ε(α)Jn−1(2
√
βα)− iNn−1(2

√
βα)] (D.1)

We turn to the explicit form of Ln where n is any integer. We started from L0, that
is I, in the above calculations but the most fundamental (or simplest) one is L1, that is Ic.
Therefore, we can generate Ln for n > 1 by differentiating L1 with respect to β or for n < 1
with respect to α.

L1 ≡
∫ ∞
0
ds s−1e−iαs−1−iβs

= −iπ[ε(βα)J0(2
√
βα)− iN0(2

√
βα)]

= −iπ[θ(βα)J0(2
√
βα)− S0(2

√
βα)]

( The benefit of using S is the convenience in the calculation of δ-functions term) Here we
don’t assume positive β so we have to add the β factor in the ε-function or θ-function. (This
can be observed from the symmetry of α and β under the transformation, s→ s−1.)

Ln =


in−1

(
∂

∂β

)n−1

L1, for n ≥ 1

i1−n
(
∂

∂α

)1−n

L1, for n < 1

⇒ L−n = Ln+2

∣∣∣∣
β↔α

We only need to see the cases for n > 1:

Ln = in−1
(
∂

∂β

)n−1

L1

= (−i)n−1
(√

α

β

)n−1

xn−1
(

∂

x ∂x

)n−1

L1, mist. x ≡ 2
√
βα

= π(−1)n
(√

α

β

)n−1

[θ(βα)Jn−1(2
√
βα)− Sn−1(2

√
βα)]− iπ(δ-function term)
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where the δ-function term, after calculations, is

(δ-function term) = (iα)n−1
n−2∑
k=0

δn−2−k(βα)
(n− 1)!

k!(n− 2− k)!

k∑
j=0

(−1)j

j!(k − j)!

1

n− 1− j

With these result, the former expansions for arbitrary orders are merely algebraic calculations
without any integral or differentiation!
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