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Abstract

Understanding avalanche systems through underlying interface dynamics

by Chun-Chung Chen

Chair of Supervisory Committee:

Professor Marcel den Nijs
Department of Physics

Nonequilibrium systems are often described by dynamic rules instead of Hamiltonians.

Among them are those defined by local dynamic rules, e.g., interface growth models; and

those defined by nonlocal rules, e.g., avalanche models. In this thesis, a mapping between

these two kinds of systems is presented so that one can make predictions for latter based on

the knowledge the former. The nonlocal iterative dynamics of the specific models that are

discussed here involve sizable corrections to finite-size scaling. It is established that these

corrections are irrelevant in the sense of renormalization group transformation and the scal-

ing behaviors of the avalanche systems in the thermodynamic limit are still described by

their underlying interface dynamics. The implications of a directed percolation roughening

phase transition in the underlying interface dynamics is investigated. It is found that this

leads to a deepening transition in avalanche systems. The critical exponent relations re-

main valid in both the deep and the shallow avalanche phases. However, the hyperscaling

relation for mass established through the compactness of the avalanche clusters is broken at

the transition point due to the fractal structure of the avalanche clusters at the transition

point.
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Chapter 1

INTRODUCTION

Interest in critical phenomena dates back to, at least, the 19th century with the discov-

ery of gas-liquid critical points, in particular due to the work of Andrews [3], and has been

at the center of attention ever since the last quarter of the 20th century. An interesting

observation is that at these transition points, systems exhibit long range correlations and

lack a characteristic length scale, in other words, they are scale invariant. The latter means

that systems look similar at different magnifications and that one can not find any charac-

teristic feature to tell them apart at large length scales. This might at first seem peculiar,

but physicists soon realized that examples are actually abundant in nature. Even more,

systems in nature that lack characteristic scales often appear to do so naturally without

evident controlling agents; unlike conventional phase transitions, which generally require

the fine tuning of control parameters to reach the so-called critical points and consequently

scale invariance only happens in a very small part of the phase diagram. This contrast

between naturally occurring criticality and the criticality at continuous phase transitions

has prompted many physicists to the search of possible mechanisms that can bring about

criticality in spontaneous ways.

One of the attempts to understand the naturally occurring criticality is the so-called self-

organized criticality (SOC) as proposed by Bak, Tang, and Wiesenfeld (BTW) in 1987 [5, 6]

as an abstraction of their earlier study of coupled nonlinear oscillators [109]. Their nonlinear

model actually bears some resemblance to a spring-block array introduced by Burridge and

Knopoff [17] in 1967 for the purpose of modeling an earthquake fault. Earthquakes, as known

by Gutenberg and Richter already before their published work in 1941 [51], follow a power-

law distribution in the intensities of energy releases. This is a nice example, showing that
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seismic activities of the earth are critical phenomena in the sense of the lack of characteristic

intensity scales.

BTW’s automatons, also known as deterministic sandpiles, are very simple models that

capture the essence of the above nonlinear processes that exhibit critical distributions of

avalanchelike events. Namely, these are systems with fast relaxation dynamics being driven

under slow external forces. Since BTW’s work, the idea of SOC has been applied to a broad

array of fields ranging from studies of biological evolution [4], to river networks, to vortex

avalanches in superconductors [8, 9], and to fluctuations in financial markets [77, 28], in

addition to the original geological manifestations in earthquake faults [21].

Even though the sandpile models are already strong simplifications of their counterparts

in nature, our current understanding of their behavior unfortunately still remains mostly

numerical. Among the few exact results, the most notable ones are Dhar’s analytic work

based on the Abelian properties of the BTW model [30, 31] and also Dhar and Ramaswamy’s

exact solution to a two-dimensional (2D) directed version of the original BTW model [32]

which is known as the DR model. One of the reasons that Dhar and Ramaswamy were

able to achieve these results is that they were able to show that in these specific models

there are no correlations in the stationary state and that the propagation of an avalanche

is governed only by the dynamics of the two edges of the avalanche cluster which simply

follow the dynamics of one-dimensional (1D) random walkers.

Directed sandpile models might at first seem much more restrictive than regular isotropic

processes. Nonetheless, recent studies of the original BTW isotropic sandpile models show

that the avalanche propagation in regular sandpile models can be decomposed into waves

of toppling which propagate directly across the system, with each site participating at most

once in each wave, until they damp away or reach the system boundary [98]. This realization

points to the understanding of waves as a possible foundation for the understanding of the

more general models. In this direction, directed models provide a simplification in which

each avalanche consists only of one single wave.

However, the simplistic random-walk-type soluble models by Dhar and Ramaswamy are

not very satisfactory. Following their work, physicists have been trying to expand the model

and the results to a broader range of dynamic rules. Notable extensions are the inclusion of
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stochasticity in the toppling process [81, 106, 76, 95], various parameters controlling, e.g.,

bulk dissipation [108], and assorted asymmetries and extra degrees of freedom in the piling

configuration of grains [25]. Along these lines Paczuski and Bassler [91] and also Kloster

et al. [69] found an exact solution to a stochastic directed sandpile model. They were

able to link the scaling exponents of avalanche distributions to the critical exponents of the

Edwards-Wilkinson (EW) universality class [35] which describes the fluctuating growth of

an interface.

Interface growth models were motivated as a tool to understand the dynamics of inter-

faces in nature. These include coast lines and mountain shapes in geography [104], cluster

boundaries of bacteria colonies [103, 82, 112, 83], crystal-melt interfaces of solidifying met-

als [71], suspension-aggregate interfaces for colloid sedimentation [27], meandering fire front

propagation in a forest [50], and solid state surface growth under molecular beam epitaxy

[29]. In the rough phase of such growing interfaces, physicists found random fluctuations of

all length scales. This actually gives us another type of intrinsic critical phenomena, that

is, the system exhibits long range correlations and scale invariance over a large part of the

parameter space. Considerable efforts have been put into the study of these kinds of critical

behavior [52, 7]. This makes it a relatively well-understood field with more analytical results

and better established universality classes [7]. Therefore, this suggests a route of improving

our understanding of sandpile models through an understanding of their relationship with

interface models.

In interface growth, the EW universality class is for those systems whose growth is

governed by a linear growth equation that takes into account the surface relaxation by

desorption as well as random deposition onto a surface [35]. The equation can be solved

exactly due to its linearity. However, the predicted results didn’t seem to account for the

early numerical simulations of low-dimensional lattice growth models such as Eden’s model

[34], ballistic deposition [113, 105, 40, 86], and random deposition with surface diffusion

[39, 85]. As it turned out, the EW scaling behavior is unstable in one plus one dimensions

(one space plus one time dimension) with respect to a nonlinearity which was to be accounted

for by the Kardar-Parisi-Zhang (KPZ) growth equation [64]. Since nonlinear higher order

terms generally arise in discrete height and lattice versions of growth dynamics, the scaling
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behaviors of lattice models is generically controlled by the KPZ fixed point unless the non-

linear KPZ term in the growth equation can be made to disappear by some symmetry

requirements [90].

Growth models generally result in rough interfaces in 1+1 dimensions (one space dimen-

sion and one time dimension), but in some discrete models of interface growth, long-range

order (LRO) can be restored by the propagation of order parameters. In some cases LRO

is induced by a limiting factor, like a maximum speed for the growth at sites [65] and in

others by the surface height at a site being stuck at the lowest exposed level [1, 2]. Then, the

dynamics of the propagation is those of absorbing states and is hierarchical. That is, when

the order parameter vanishes from the system, it will never come back. However, when that

happens, we can redefine the order parameter to, e.g., being sites of the new lowest level

and it again will follow the same dynamics. In the ordered phase, the interface is pinned to

a certain level and is macroscopically flat. The transition can be from a KPZ rough phase

[101, 65, 1] or a EW rough phase [75] to a flat phase through a directed percolation (DP)

[68, 102, 45, 46, 115] transition or through a directed Ising [49, 47, 62, 66] type transition

[57, 94].

Another field of research inspired by BTW’s sandpile models is the study of granular

avalanches in real sandpiles. The early experiments involves rotating drums [61, 100, 38,

15, 18] or deposition onto a circular cone-shape sandpile [54]. However, no signals of power-

law distributions of avalanches were found in these experiments except over some small

regions of the avalanches [55, 15]. This remained the case until Frette et al. performed

some experiments on a pile of elongated rice grains [42] sandwiched between glass plates.

They attributed the observed power-law scalings of the avalanches to the asymmetries of the

grains that allowed more friction and randomness in the packing configuration [42, 25]. This

partly inspired the search for SOC in cohesive granular materials, e.g., the toner powders

used in xerography [99].

Granular avalanches in cohesive materials were recently investigated by Valverde et

al. [111]. They made an observation which is contrary to their noncohesive counterparts

that that the avalanches for cohesive granular materials penetrate deeper into the surface.

Noncohesive avalanches only involve a few surface layers. Since cohesion between sand
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grains can be induced by adding moisture into the system [89], their observation leaves

open the question of whether there exists a phase transition between the avalanches of dry

sand and wet sand.

The scope of this thesis is to understand the relation between self-organized critical

phenomena and the interface models. I will focus on directed sandpile models and on the

specifics of low-dimensional systems to establish a mapping between directed sandpile mod-

els and interface growth model in one lower dimension. While interface models are usually

defined by local updating rules, sandpile models are defined by iterated avalanche processes

over local relaxation dynamics. This gives rise to the caveat that a large correction to scaling

which is due to this distinction might change the scaling behavior of the avalanches. I will

address this issue, and I will show that the correction is irrelevant in the thermodynamic

limit.

The roughening transitions in 1+1-dimensional interface models lead to the interesting

quest to understand its implications on the corresponding avalanche system. I will show that

it gives rise to a deepening transition in the resulting conformations of the avalanche clusters

to a flat avalanche region where only surface layers are involved in the toppling dynamics.

However, the discrete nature of the models plays an important role in the existence of this

transition, and I will leave open the question of whether the transition will exist in real

sandpiles.

1.1 Criticality in nature

In statistical physics, a system is critical when it has long-range correlations and it is scale

invariant. One example of scale invariance is the shape of a coast line as was pointed out

as early as 1967 by Mandelbrot [79]. When a coast line is shown on a map, it’s impossible

for us to estimate the scale of magnification used in the map without previous knowledge of

the area shown. One always sees similar wiggles at all scales of magnification and there is

no characteristic feature allowing one to tell them apart. Also, the length of the coast line

between two points on the coast is not well defined without choosing a lower limit of the

minimum geographically meaningful features of the coast G. The measured length L(G) will
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then greatly depend on the actual value of G chosen, that is, it will depend on the length of

the ruler one uses to carry out the measurement. Mandelbrot found L to be proportional

G1−D, with D ≈ 1.25, which actually diverges as D → 0. The exponent D here describes

how two measurable quantities of the system will scale with respect to each other and is

called the fractal dimension of the coast line. Deterministic fractals, like the Sierpinsky

Gasket, are created by deterministic rules, while many random structures, such as a coast

line or liquids droplets at the gas-liquid critical point, are statistically self-similar at different

scales when ensemble averaged, and are therefore referred to as statistical fractals.

Scale invariance is often associated with long-range correlations in the systems. This

means that the correlation dies out slower than any exponential, in particular, it decays as

a power law, thus the correlation lengths diverges. In the example of the coast line, one

may consider the orientational correlations between two segments of the coast separated by

a certain distance. One finds that it decays as a power law in the distance. However, not all

scale invariance we find in nature is associated with long-range correlations. For example,

the path of a suspending particle in liquid follows a three dimensional random walk [36].

Its distance d from a given starting point and the path length l that it traces are related by

d = l1/2. The path is scale invariant in that it is self-similar at all magnifications. However,

in this specific case, there are no correlations in the path and we generally do not consider

the system critical.

1.1.1 Continuous phase transition

The interest in critical phenomena stems from the study of continuous phase transitions in

equilibrium statistical mechanics, such as the critical opalescence of water at the endpoint

of the liquid-gas boiling line, the zero field magnetic properties of iron near the Curie

temperature, and the fractal shapes of the remaining conducting pathway in a grid of

deteriorating wires at the threshold of losing its system-wide conduction. In these situations,

criticality manifests itself as power-law dependence between the observable quantities in the

system; for example, how much time it takes for a local excess water density to dissipate to

half the original value as function of the amount of initially introduced excess water; or how
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the zero field magnetization depends on the temperature deviation from the Curie point;

or how many wire segments the shortest conduction pathway contains as a function of the

distance between the two electrodes.

These examples from continuous phase transitions all share a common feature. They all

require the tuning of some control parameters to reach criticality. For water, we need to

tune the temperature to T = 647.14 (K) and the pressure to p = 22.06 (MPa) [74]; for the

magnetization of iron, we need to tune the temperature to T = 1043 (K) [74]; while in a

two-dimensional square grid of good and bad wires, the fraction of good wires needs to be

exactly 1/2 [80] in order to make the system critical.

The most important lesson that we learned from equilibrium critical phenomena is the

existence of universality. For the vast varieties of physical systems, those found in nature as

well as the model systems invented by physicists, the critical behaviors can be classified into

so-called universality classes. They state how specific observed quantities in the systems

behave at large length scales when we reduce the magnification of our measurement system.

These universality classes turn out to be rather insensitive to the microscopic details, but

instead, to depend only on the symmetries of the systems and the conservation laws obeyed

by the systems. Decades of study have made these universality classes quite well understood.

Especially in two dimensions, the postulate of conformal invariance limits the possible forms

of the correlation functions in critical systems and allows us to identify the universality

classes with different topological charges. Additionally, the development of renormalization

group theory helps us understand the origin of these universality classes as fixed points in

more general parameter phase spaces, such as that illustrated in Fig. 1.1. These fixed points

trap the long-range behaviors of various systems.

1.1.2 Gutenberg-Richter relation of earthquake distribution

Criticality in nature in addition to the continuous phase transitions was noted as early as

the 1930s. The Gutenberg-Richter relation for the distribution of earthquakes is the famous

example. In a seminal paper published in 1941 [51], Gutenberg and Richter showed that on

an annual basis the number of earthquakes of certain magnitudes is about ten times more
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Figure 1.1: A typical 2D phase-space and renormalization flows (for the Heisenberg model

with uniaxial anisotropy from [20]); The black dots are the fixed points and arrows are

the directions of renormalization flows. The dashed line represents the trace of a typical

experiment as the temperature is varied.
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Figure 1.2: Earthquake magnitude distributions for world average in a year (solid line)

and in South California from 1987 to 1996 (dashed line) with data obtained from the South

California Earthquake Data Center; Both are showing similar power-law decay.

frequent as those of one magnitude higher. That is, they follow the relation

log N(M) = a− bM (1.1)

with the constant b being roughly 1. The magnitude M of an earthquake is measured on a

log scale in terms of the energy release (Richter’s scale). This demonstrates a nice power-law

relation between the frequency of earthquakes and the released energy in each one. The

most notable aspect of this relationship is its robustness. In Fig. 1.2, the data from different

sources show similar power-law behavior.

The simplicity and robustness of this relationship suggest the existence of a general

mechanism that might be underlying the seemingly complicated earthquake dynamics. That

is, while the formation of individual quakes might be specific to the microscopic details of the

local conditions of the system, the general statistical features of the earthquake distribution

should be robust to variations in the implementing mechanism.
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Figure 1.3: A spring block system for the modeling of an earthquake fault; The blocks

on a frictional fixed plate are connected to each other with coil springs while each block is

connected to the slow moving top plate with a leaf spring.

1.1.3 Spring block model of earthquake fault

This prompted Burridge and Knopoff to construct a spring-block system similar to that

illustrated in Fig. 1.3 to model an earthquake fault [17]. What they built was an array

of massive blocks resting on a frictional surface. Coil springs were used to connect each

block to its neighbors. A leaf spring was used to connect each block to a slow moving plate

hanging above. The static and dynamic friction between the surface and the blocks provide

a highly nonlinear interaction. As the moving plate displaces gradually, the stress increases

on each block through its connecting leaf spring. When the force on a given block exceeds

its static friction with the bottom surface, it slides forward and stops at a position when

its net stress is less than its kinetic friction. Through the coil springs connecting to the

neighboring blocks, this change of position also increases the stress value of the neighboring

blocks and it is thereby likely to create more sliding blocks among the neighbors. This

earthquake like event stops when all the stresses on the blocks are less than their static
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friction. As the slidings happen much faster than the stress build up by the hanging plate,

we can distinguish each event as an isolated avalanche.

Counting the number of sliding blocks in each of the avalanches, Burridge and Knopoff

were able to obtain a distribution of event sizes resembling the Gutenberg-Richter relation of

earthquakes. Their result shows that the Gutenberg-Richter relation is a universal aspect of

earthquakelike dynamics which can be captured by simple models with very limited degrees

of freedom. However, even though the Burridge-Knopoff system is much simpler than a

realistic earthquake fault, the highly nonlinear nature of the interaction makes attempts to

obtain an analytical solution extremely difficult [21].

1.2 Sandpile as a paradigm to self-organized criticality

In the context of chaos theory, BTW studied the phase organization for a chain of nonlinear

oscillators [109] coupled with each other through coil springs. This system is similar to the

spring-block model made by Burridge and Knopoff and it is also difficult to treat analytically.

However, BTW recognized that some of the behaviors of the system are more generic than

these in the specific model. They later constructed a considerably simplified model that

consists only of integer variables and cellular automaton dynamics that exhibits interesting

behavior [5], i.e., the system exhibits power-law scaling in the avalanchelike events without

the fine tuning of any control parameters. This has become known as the BTW sandpile

model.

1.2.1 The BTW Sandpile model

Consider an integer height variable z defined on a square lattice with the sites {i}. The

system is stable when all the heights are less than a given critical value zc,

zi < zc. (1.2)

An unstable site i is toppled with the rule

zi → zi − 2d, (1.3)
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where 2d is for the coordination number of d dimensional system, while each of its 2d

neighbors {j, 〈i, j〉} have their heights increase by 1,

zj → zj + 1. (1.4)

The toppling process conserves height or particles except at the boundary sites which have

less than 2d neighbors.

The system is driven by randomly choosing a site and increasing its height by 1, i.e.,

by the deposition of a particle. An avalanche is defined as the subsequent topplings of the

unstable sites that are required to bring the system back to a stable configuration. The

next deposition take places only after the system is completely stabilized.

The easiest way of understanding the rules in the BTW model is to think of it as

a discrete version of the Burridge-Knopoff spring-block model. Think of the stress on

each block as an integer with a critical value. When the stress on a block exceeds this

value, the block’s releasing and redistributing its stress to its neighbors are implemented

by reducing the integer stress value it has by the number of its neighbors while each of

its neighbor increases its stress value by one. The boundary of the system is implemented

by surrounding the whole system with special blocks that will never release stress to their

neighbors. The slow moving plate that is driving the system uniformly is implemented by

randomly increasing the stress value of one of the blocks by one. This driving process is

slow so that all blocks will return to a stable value of stress before the next increment by

the driving plate is applied. An avalanche event is just the system’s response to such an

increment.

The BTW model has a simple set of dynamic rules that is very easy to implement on a

computer. And, it’s easy to observe the critical behavior of the system via the statistics of

the avalanche events as shown in Fig. 1.4. The dashed lines are linear fits to the observed

distributions. They show that the size s (the number of sites participate in an avalanche)

distribution D(s) scales as s−τ and the duration t (how many times we need to topple all

the unstable sites in the system to bring it back to a stable configuration) distribution D(t)

scales as t−α with the exponents τ ≈ 1 and α ≈ 0.43. Nonetheless, the exact value for the

scaling exponents remains unknown. The original result of BTW was supported by Zhang’s
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Figure 1.4: Cluster size (a) and lifetime (b) distributions of avalanches, coarse grained, on

a 50×50 array, averaged over 200 samples of the BTW model; The dashed line in (a) shows

a power-law decay of s−1 and the dashed line in (b) shows a power-law decay of t−0.43.

These plots are taken from [5]
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prediction based on a continuous energy model [114] but later numerical studies put the

τ value at roughly 7/6 [78] and a mean-field-type model suggests the value 23/21 for the

τ exponent [26]. A study using a renormalization scheme by Pietronero et al. [97] shows

τ ≈ 1.253.

1.2.2 Critical state of Abelian Sandpile model

A significant property of the BTW model is that the toppling rule of the model is Abelian

in the sense that when multiple unstable sites are present in the system, the final stable

system configuration before the next deposition of a particle is independent of the order in

which the unstable sites are toppled. The Abelian property of the BTW model allows some

analytical conclusions to be drawn. Dhar first showed that some of the configurations of the

system will never show up in the stationary state of the system whereas all of the possible

configurations of the stationary state will appear with equal probability [30]. Majumdar

and Dhar later introduced a “toppling from the sink” algorithm to determine if a given

configuration is a possible configuration of the stationary state [78]. This leads to a one-

to-one mapping between the possible configurations of the stationary state and all possible

spanning trees covering the lattice.

The Abelian property also allows a simple view of the particle movements in the system.

Each of them can be considered as making a random walk on the lattice until they reach the

boundary. The original toppling process is deterministic under the condition that we don’t

keep track of the identity of each particle. The stochasticity of the random walk enters by

adding an imaginary label to each particle and having the particles participating in each

toppling event randomly mixed before distributing them to the neighbors so that when one

particle is tracked, we’ll find that it moves in a random direction each time it participates in

a toppling. From this random walk nature of the process, a particle will participate on the

average in O(L2) toppling events before it reaches the system boundary and falls off the edge,

given that the linear size of the system is very large, L À 1. As a consequence, the average

number of topplings that results from a single deposition of particle also scales as L2. The

same random walk prospective also leads to the exact form of the correlation Gij between
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the deposition of a particle at site i and the number of consequent topplings at site j. In the

continuous limit, it should simply follow the Poisson’s equation ∇2G(xj − xi) = δ(xj − xi)

with a point source [30].

However, while these exact results are encouraging, when it comes to the exact values

of the scaling exponents which characterize the distribution of avalanche sizes, and thus

the possible universality classes, the problem becomes extremely elusive and, even for the

original BTW model, there remain many open questions today.

1.2.3 Directed sandpile model

In trying to understand the dynamics of the BTW model and searching for a more analyt-

ically manageable model, Dhar and Ramaswamy found an exactly solvable variant of the

BTW model which is called the directed sandpile model [32]. This differs from the BTW

model in its toppling rule, in that, when a site reaches the critical height, its toppling only

transfers its stress to half of its neighbors in a given direction such that the toppling activ-

ity only propagates in one-way through the system. This allows us to perform the toppling

process in a row-by-row fashion. In d dimensional space, the system is defined on a square

lattice tilted at 45◦ with critical height zc = d and the toppling of an unstable site transfers

its d grains to its d downward neighbors. Consider d = 2 and use y for the downward

direction and x for the transverse direction. The tilted square lattice is defined on the sites

with x + y being even numbers. A site (x, y) topples when z(x, y) ≥ 2 with the rule

z(x, y) → z(x, y)− 2 (1.5)

and its two downward neighbors receive the displaced grains

z(x± 1, y + 1) → z(x± 1, y + 1) + 1. (1.6)

The system is driven by the deposition of a single grain to a randomly chosen site at the

top y = 0 row,

z(xi, 0) → z(xi,0) + 1 (1.7)

where xi is an even number randomly chosen as the triggering site for the i-th avalanche.
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A special property can be found in the toppling rule of the DR model. When a site

is inside a compact group of active sites, it will receive the exact number of grains that it

will lose in its subsequent toppling to its downward neighbors. This guarantees its toppling

and leaves its final configuration unchanged. There are two consequences of this. One is

that the toppling rule can not create a hole of untoppled sites inside an avalanche cluster.

While, in three or higher dimensions, holes of untoppled sites still can be embedded in an

avalanche cluster by enclosing them within its meandering boundaries, in two dimensions

(2D), where the boundaries are just the traces of two point-objects, an avalanche cluster

remains compact. The other special property is that the configuration of the system is only

changed at the boundary sites of an avalanche cluster. With the same Abelian property as in

the isotropic model, Dhar and Ramaswamy were able to show that all the configurations of

the system are allowed, and that each one will occur with equal probability in the stationary

state of the system. From the symmetry of the stationary state, it is easy to show that there

are no correlations between sites in a stationary sandpile. This makes the propagation of

the two boundaries independent random walks in 1+1 dimensions with y as the time and

where an avalanche cluster is given by the separation of the two walkers before their first

and only encounter that stops the avalanche.

From the random walk nature, the distribution of the merging times for two walkers gives

the distribution of the avalanche length l, which is defined as the maximum y coordinate of

the avalanche cluster, and we have

Pl(l) ∼ lτl (1.8)

with τl = 3/2. This leads also to τw = 2 for the scaling exponent of the width w distribution,

since w ∼ l1/2 follows directly from the random walk characteristics. (The width is measured

as the transverse maximum x size of the avalanche cluster.)

With this exact solution, the directed sandpile model becomes a nice test bed for various

numerical schemes, such as dynamical real space renormalization [11, 53, 60], and also for

the concept of universality [12]. Additionally, it becomes interesting to investigate how

various complications such as dissipation and stochasticity modify the scaling behaviors of

the avalanches. One of these attempts was made by Tadić and Dhar [107]. They introduced
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a toppling probability p for unstable sites. For p < 1, this leaves some chance for particles

to pile up on a site i even when zi ≥ zc. The product of the density ρ of sites with height

of zc − 1 and greater, which are pro-active in that they will be active once they receive a

particle, with the toppling probability p becoming an effective parameter p̄ = ρp for the

propagation probability of toppling activities. When p is greater than a critical threshold

pc of directed percolation (DP) on the lattice, the effective parameter p̄ will self-tune to the

critical point. This results in DP-like scaling behavior for the avalanche clusters. Tadić and

Dhar were able to derive various scaling exponents for the avalanches from the known DP

exponents.

Another attempt to introduce stochasticity into the model was proposed by Pastor-

Satorras and Vespignani [95] which we will discuss in the next section.

1.2.4 Stochastic directed sandpile model

Considering the toppling rule in the DR model, we see that the stochasticity may be in-

troduced by allowing each sand grain to make an independent choice of which downward

neighbor it wants to go to [95, 96]. This is equivalent to replacing the toppling rule (1.6)

with a stochastic one in which rule (1.6) applies for 1/2 of the time, while for 1/4 of the

time

z(x + 1, y + 1) → z(x + 1, y + 1) + 2 (1.9)

and for the remaining 1/4 of the time

z(x− 1, y + 1) → z(x− 1, y + 1) + 2. (1.10)

The other site remains unchanged. This gives us the so-called stochastic directed sandpile

model (SDSM). In the SDSM, the downward neighbors won’t necessarily receive the same

number of grains even if they have the same number of upward neighbors toppling in the

same avalanche. This allows the possibility of opening up holes of inactive region in an

avalanche cluster in contrast with the DR model. This can be confirmed by inspecting the

typical avalanche cluster shown in Fig. 1.5, which contains holes of inactive regions near the

boundaries of the cluster. However, nonetheless, the avalanches remain essentially compact



18

Figure 1.5: A typical avalanche cluster (sites participated in the toppling) in stochastic

directed sandpile model; It’s essentially compact in the sense that while holes of inactive

regions are visible near the boundary, their sizes do not scale with the cluster size. The size

of the box shown is Lx × Ly = 360× 8833.
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as the sizes of the holes of inactive sites do not seem to scale with the size of clusters

themselves. This allows us to consider the avalanche cluster as a compact object in the

thermodynamic limit.

It’s easy to see, using the independent random walkers’ picture, that this model remains

Abelian. That representation also leads to the conclusion that all stable configurations of

the system are possible and equally likely in the stationary state of the system [91, 69]. Just

as in the deterministic model, this implies that the stationary state is not correlated and

each avalanche can be considered as the propagation of toppling activities in uncorrelated

random media.

However, unlike the deterministic model, the existence of multiple topplings leads to

nontrivial propagation dynamics inside the avalanche cluster. Paczuski and Bassler [91]

and also Kloster et al. [69] were able to show that, within an avalanche cluster, the number

of particles received at each site (or the number of particles it has to loose for the site to

become stable) is described by the Edwards-Wilkinson [35] equation of interface growth.

Define the quantity n(x, y) to be the number of grains received by the site (x, y) in a

given avalanche event. Since each toppling takes two particles, the number of grains it will

transfer to its downward neighbors nout will be the same as n with the probability 1/2 while

it will differ from n by ±1 each with probability 1/4. The randomness comes from whether

the site is originally occupied by a particle or not. Since the stationary state of the system

is uncorrelated, this results in an uncorrelated noise of limited amplitude whenever a site

receives grains in an avalanche. We can describe this by

〈η(x, y)〉 = 0

〈η(x, y)η(x′, y′)〉 = θ[n(x, y)]δ(x, x′)δ(y, y′), (1.11)

where θ(n) is a step function with θ(n > 0) = 1 and θ(n ≤ 0) = 0 while δ(x, x′) is the

Kronecker delta function. On the average, each of it’s downward neighbor receives nout/2

particles from the site. However, as each grain is randomly making independent choices

of which neighbor it’s heading for, the actual number of grains that one of its downward

neighbors receives is given by the sum of the random variables ηi = 0 or 1, i = 1 · · ·nout.

The fluctuations in the evenness of the grain distribution introduces an uncorrelated random
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current j in the transverse direction with the amplitude
√

n,

〈j(x, y)〉 = 0

〈j(x, y)j(x′, y′)〉 = n(x, y)δ(x, x′)δ(y, y′). (1.12)

For the site (x, y), the contribution of this current comes from its two upward neighbors and

it is given by j(x− 1, y)− j(x + 1, y) ≈ 2∂j(x, y)/∂x. The continuous form of the equation

of motion for n is then given by [91]

∂n(x, y)
∂y

=
1
2
∇2n(x, y)− 2

∂j(x, y)
∂x

+ η(x, y). (1.13)

From dimensional analysis, the conservative random current is irrelevant compared to

the nonconservative noise η. Ignoring the conservative random current, Eq. (1.13) is the

EW equation with a threshold noise, which turns off when n = 0. The compactness of the

avalanche clusters allows the propagation dynamics to be described by the EW equation

and the threshold nature of the noise only comes into play at the boundaries of an avalanche

cluster. Therefore, the scaling of the characteristic lengths of the avalanches can be expected

to follow that of the EW universality class, that is, the correlation lengths ξn ∼ ξα
x and

ξy ∼ ξz
x with α = 1/2 and z = 2.

Just as in the BTW model, we can imagine tracking each particle by labelling it. In a

directed sandpile, a particle will participate in Ly topplings before leaving the system with

Ly being the size of the system in the longitudinal direction. This gives the expected total

number of topplings m for each avalanche,

〈m〉 = Ly/2. (1.14)

Together with the EW scaling and the general formulation to be described in the next

chapter, this determines all of the scaling exponents, τl = 7/4 and τw = 5/2, for the

distribution Pl(l) ∼ lτl of the avalanche length l (the maximum y size of an avalanche),

and the distribution Pw(w) ∼ wτw of the avalanche width w (the maximum x size of an

avalanche).
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1.3 Kinetic roughening of interface growth

Growing interfaces are yet another class of interesting phenomena in nonequilibrium systems

that can exhibit critical behavior without the tuning of a control parameter. This refers to

an evolving interface driven by a finite external force so that it won’t settle into a equilibrium

state. General observations of these systems have shown so-called kinetic roughening where

an initially flat interface that is being driven through a random medium becomes rougher

and rougher in as time progresses. Here are some examples. (i) Consider a liquid being

pumped into a random porous media. The liquid-air interface develops an irregular shape

as it penetrates faster and deeper at places where the path is easier while it moves slower

or stands still at places where the path is blocked. (ii) Consider a growing bacteria colony

on a nutritious agar plate where food is abundant. While the colony maintains a solid

and roughly circular shape as it expands, the boundary of the colony becomes rougher

and richer in structure. (iii) Consider the slow combustion of paper [84, 88]. The initially

straight burning front wiggles more and more as it progresses through the randomness and

fluctuations in the paper texture.

Simple models for understanding the dynamics of such growing interfaces have long been

studied. Among the earliest and the simplest ones is the so-called Eden’s model [34] which

can be regarded as a lattice model describing the growth of a bacteria colony on a agar

plate. The system starts with a single occupied site representing the source of bacteria.

The cluster then expands by randomly occupying empty sites neighboring the occupied

cluster. After a long period of expansion, the resulting geometry of the cluster is a compact

and roughly circular object. It is not a fractal. The boundary of the cluster develops into a

roughened interface with self-affine structure which means that it looks alike after rescaling

with different factors in different directions.

Just as for the sandpile models, the dynamic rules for Eden’s model appear very simple,

but a field-theoretical description of the process yields a stochastic nonlinear equation of

motion [93],
∂ρ(x, t)

∂t
= ∇2ρ + ρ− ρ2 + ρη(x, t), (1.15)

where the variable ρ represents the density of occupied sites. Equation (1.15) proves to
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be too difficult for analytical treatments. However, numerical simulations and physical

observations show that the interesting dynamics of the system actually happen only at the

boundary of the cluster, that is, on the interface. Therefore, we can hope to understand

this growth process by focusing on the dynamics of its boundary.

Instead of the growth from a single seed, consider the growth from a line source in a

strip geometry. The system is finite in the x direction with 0 ≤ x < L and is semi-infinite

in the y direction with y ≥ 0. The initial cluster occupies the whole y = 0 row. We can

describe the boundary using a single-valued function h(x) that represents the maximum y

of the occupied sites in column x. We call h the position of the interface at the location x.

A growth process that follows the dynamics of Eden’s model is illustrated in Fig. 1.6.

Heuristically, the roughness of an interface depends on the length scale over which we

view it. For example, the surface of the moon looks smooth from the earth, but it is full of

craters and marks when we approach it with the lunar lander. To have a definition of being

rough in the thermodynamic limit, we need a criterion that is scale independent. Here we

define the roughness of an interface to be the second moment of its position h with respect

to the average position over all locations x,

W 2 ≡ (
h− h̄

)2
. (1.16)

This h variable can be considered as the distance of the interface position relative to some

reference line while the roughness is independent of this choice. The interface is considered

to be in the so-called rough phase when the roughness W 2 diverges as the system size L

goes to infinity. Generally, in the rough phase of the growth, an initially flat interface will

roughen in time. And, if the system size is finite, its roughness will eventually reach a

stationary value that depends on the size of the system. The way that it roughens from a

initially flat configuration is characterized by the roughening exponent β which is defined

through the equation

W ∼ tβ, (1.17)

where t is the time over which it has grown since the initial flat state. The stationary value

of the interface roughness is characterized by the roughness exponent α which is defined



23

Figure 1.6: Growth of a Eden cluster from the bottom y = 0 row on a strip geometry:

0 ≤ x < Lx, y ≥ 0 with Lx = 800; Each separately shaded region represents the growth

of an area of 20000 lattice sites. As the interface grows upward, it becomes rougher and

rougher.
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through the equation

W ∼ Lα (1.18)

that describes how it scales with respect to the interface length L.

1.3.1 Continuous equations for interface growth

The dynamics of a rough growing interface can be described by the so-called Langevin

equation which in its simplest form is given by

∂h(x, t)
∂t

= V0 + η(x, t). (1.19)

Here V0 is a constant that represents the growth rate of the interface, and η is a random

variable that accounts for the noise in the growth process. To simplify the problem, we

assume η to have zero mean

〈η(x, t)〉 = 0, (1.20)

and to be uncorrelated

〈η(x1, t1)η(x2, t2)〉 = Dδ(x1 − x2)δ(t1 − t2). (1.21)

Here D is a constant that characterizes the magnitude of the noise. The brackets indicate

an ensemble average. This set of equations describes an interface growing with a velocity

that’s independently fluctuating in time at each location. In fact, for each location the

interface position is just a random walk process biased with a mean velocity V0 in the h

direction. Equations (1.19)–(1.21) define the so-called random deposition model for which

it’s obvious from the random walk aspect that the second moment of the position h grows

as the square root of time, and consequently, will never saturate for any system size. As a

result, the roughening exponent β = 1/2 while the roughness exponent α is not well defined.

1.3.2 Edwards-Wilkinson growth equation

Growth with a random velocity at each location in space is not very realistic since we

certainly expect that the growth is influenced by what’s happening at neighboring locations.
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In addition, the growth can only be well characterized by an interface when it’s a well-

defined continuous line, that is, h(x) needs to be a continuous function. To preserve its

continuity and to account for the coupling between the neighbors, we can introduce a

surface-relaxation-type curvature term into the Langevin equation

∂h

∂t
= ν∇2h + V0 + η. (1.22)

Here ν is a parameter that controls the strength of the relaxation process. This gives us

the Edwards-Wilkinson equation [35]. Because Eq. (1.22) is linear in h, it can be solved via

Fourier transformation into momentum space. Also, the average growth rate can be made to

vanish by transforming into a moving frame in the h direction, h → h− V0t. Consequently,

we can just consider the case V0 = 0 without any loss of generality.

In momentum space, all of the modes decouple and the parameters in Eq. (1.22) will

not be modified by the renormalization process. So, we can derive the scaling exponents

from a simple scaling ansatz. Consider measuring the space using a scale which is larger by

a factor of b than the original scale, x = bx′. We introduce the corresponding adjustments

in the scale for time t = bzt′ and for the interface position h = bαh′. The simple scaling

ansatz requires that the rescaled system has the same physical description, that is, the new

variables should also satisfy Eq. (1.22) with the same value of ν and with the same value of

D for the noise as that defined in Eq. (1.21). This leads to the rescaled noise η = b−(d+z)/2η′,

where d is the dimension of x space, and to the equation

∂h′

∂t′
= νbz−2∇′2h′ + bz−α−(d+z)/2η′. (1.23)

Setting the exponents for the b factors to zero leads to

z = 2 (1.24)

and

α =
z − d

2
. (1.25)

This indicates that the interface is rough for d < 2 and flat for d > 2.
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1.3.3 Kardar-Parisi-Zhang growth equation

In describing a growing interface by a position variable h relative to some reference line, we

are picking up a preferred direction for the growth process. However, for some interfaces,

the growth dynamics is rotationally invariant and it only depends on the local orientation

of the interface. Both the boundary of a bacteria colony on a uniform substrate and the

cluster in Eden’s model expand in all directions and therefore are examples in which each

segment of their cluster boundaries should have the same dynamics when we choose any

reference frame relative to the local orientation of the segment. When an interface segment

is growing with a given velocity v perpendicular to its orientation, the growth rate measured

in a reference frame slightly misaligned with the surface is given by [10]

∂h

∂t
= v

√
1 + (∇h)2 ≈ v +

v

2
(∇h)2 . (1.26)

This shows the presence of a nonlinearity in the growth of this kind of interface and it

becomes necessary to consider a more general equation which includes such a nonlinearity.

This is the so-called Kardar-Parisi-Zhang (KPZ) equation [64]

∂h

∂t
= ν∇2h +

λ

2
(∇h)2 + η. (1.27)

In additional to providing rotational invariance, the additional λ term in Eq. (1.27) can

also be used to account for a component of gradient-dependent growth rate in the growing

process.

Applying the same rescaling argument as we did for Eq. (1.23), we find that the λ term

in Eq. (1.27) scales like

λbz−2+α (∇h)2 . (1.28)

This diverges with b for d < 2 if we assume EW scaling. This indicates that the EW scaling

is unstable to the KPZ nonlinearity below two dimensions. As we have shown in Eq. 1.26,

the coefficient λ is generally proportional to the growth velocity. Thus, this nonlinearity

should be present in growing interfaces and we should expect them to be belong to the KPZ

universality class.

The KPZ equation is also related to the so-called Burgers’ equation [16]

∂v
∂t

= −λv · ∇v + ν∇2v −∇η (1.29)
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with the constraint

∇× v = 0 (1.30)

that describes a randomly stirred vorticity-free fluid by the change of variable

v = −∇h. (1.31)

The λ term in Eq. (1.29) comes from the total derivative of the velocity v,

Dv
Dt

=
∂v
∂t

+ v · ∇v, (1.32)

and it sets the value of the coefficient λ = 1 in order to respect Galilean invariance of the

system, i.e., the fluid should be described by the same equation for all observers moving

at constant velocity with respect to each other. This symmetry can not be broken by

changing the scale used to measure the system. Therefore, λ = 1 should be invariant under

a renormalization transformation that preserves this invariance and thus it represents a

fixed point for the KPZ renormalization flow. Applying this to the KPZ equation, this

suggests that the exponent of the scale factor b in Eq. (1.28) should be zero and it leads to

the scaling relation [41, 87]

α + z = 2. (1.33)

This leaves us with only one independent scaling exponent between α and z at the λ = 1

fixed point.

In 1D, the value of this remaining independent scaling exponent, say, α can be found by

showing that the probability Π[h(x)] for the system to be in the configuration h(x) has a

stationary solution

Π [h(x)] = exp
(
−

∫
dx

[
ν

2D
(∇h)2

])
(1.34)

to the Fokker-Planck equation

∂Π
∂t

= −
∫

dx
δ

δh

[(
ν∇2h +

λ

2
(∇h)2

)
Π

]
+ D

∫
dx

δ2Π
δh2

(1.35)

which is derived from Eq. (1.27). Equation (1.34) has a Gaussian distribution in ∇h which

suggests that in the stationary state, there is no correlation between whether the interface

height is going up or down at different locations as we trace it along the x direction. In
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other words, it’s a random walk if we consider x to be the time and h to be the position of

the walker. This implies that the fluctuations in h scale as the root square of the interface

length and gives us

α =
1
2
. (1.36)

This leads to

z = 2− α =
3
2
. (1.37)

However, this solution is only applicable to 1D interfaces and the λ = 1 fixed point

is only stable for d < 2. As will be discussed below, in 2D, the KPZ term is a marginal

operator, which is known to change the scaling exponents of the EW equation to α ≈ 0.4

and z ≈ 1.6. The exact values still remain unknown [24].

1.3.4 Renormalization flow for the KPZ equation

Following the success of equilibrium critical phenomena, Forster et al. [41] generalized the

technique of renormalization group to dynamical systems and they applied it to the noisy

Burgers’ equation (1.29), i.e., they applied it to the equation that later became known as

the KPZ equation. Their results were reformulated in interface language by Kardar et al.

[64].

There the idea is to transform the equation to momentum space and to write down

perturbative corrections to the parameters in the equation. The lattice spacing which is a

lower cutoff in position space is represented by an upper cutoff Λ in momentum space. The

renormalization is done by integrating over a thin shell of thickness lΛ next to the cutoff

in momentum space and then rescaling the system down by a factor of b = el, x → bx to

restore the original cutoff. In order to preserve the same description of the system, we also

need to make adjustments in the time t → bzt and the height h → bαh scales.

Up to the order of λ2 in the perturbative expansion, to obtain the same KPZ equation

requires us to adjust the parameters according to the equations [64]

dν

dl
= ν

[
z − 2 + Kdg

2 2− d

4d

]
(1.38)

dD

dl
= D

[
z − d− 2α + Kd

g2

4

]
(1.39)
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dλ

dl
= λ [α + z − 2] , (1.40)

where g2 ≡ λ2D
ν3 and Kd ≡ Sd/(2π)d with Sd being the surface area of the d-dimensional

unit sphere. These are the flow equations in the KPZ phase-space that show us how the

parameters will appear to be changing when we change the scale of our measurements.

The fixed points of these flow equations, which are found by setting the derivatives to

zero, represent the asymptotic properties of the system in the thermodynamic limit and

characterize the universality classes.

As mentioned previously, Galilean invariance requires that λ = 1 not be modified. Re-

specting that in Eq. (1.40), we need to have α + z = 2 because otherwise we lose the

invariance. A linear combination of the flow equations (1.38)–(1.40) gives the flow equation

for the parameter g,
dg

dl
=

2− d

2
g + Kd

2d− 3
4d

g3 (1.41)

which is found to have the two fixed points,

g∗1 = 0 (1.42)

and

g∗2 =

√
2d(d− 2)

Kd(2d− 3)
. (1.43)

The g∗1 fixed point corresponds to the λ = 0 case of the KPZ equation. This reduces the

KPZ equation to the EW equation discussed previously. However, this is only stable for

d > 2 and from Eq. (1.25), it gives us a flat phase. The g∗2 fixed point is unstable for d > 2.

It represents the transition point between the EW flat phase and the KPZ rough phase. The

characteristics of the KPZ rough phase in dimensions d > 2 are still being actively pursued

by physicists. It is described by a strong-coupling fixed-point that lies outside the control

of this renormalization transformation where the perturbative expansion is only valid for

small λ.

In one dimension, g∗2 =
√

2/π is an attractive fixed point. This means that for any

system described with a nonzero λ term by the KPZ equation we’ll eventually observe KPZ

scaling behavior in the thermodynamic limit. At the KPZ fixed point, the EW surface

relaxation term is actually also nonzero. The ratio ν3/D is given by λ2π/2. In practice,
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the microscopic description of the system will not coincide with this ratio; i.e., we will not

be at this renormalization-transformation fixed-point. All points at λ 6= 0 flow to the fixed

point, and belong to the same universality class. However, we must expect to find so-called

corrections to scaling with an amplitude proportional to the distance to the fixed point, i.e.,

the scaling of the system at small length scales or the scaling of a finite system of small size

will appear different from that of the KPZ universality class, if fitted with a single power

law. Moreover, strong crossover scaling effects will be present, both in length and time,

that are associated with the EW fixed point if λ is small.

1.4 Directed percolation

Directed percolation (DP) emerged as one of the generic absorbing-state-type dynamic

processes. It models the propagation of epidemics, e.g., forest fires and various types of

surface catalysis processes [68, 102, 45, 46, 115]. Such processes involve an activity field

ρ(x) ≥ 0 and a so-called absorbing state ρ(x) = 0, typically the vacuum, from which it

cannot escape. The relevant tunable parameter is the propagation probability q. The system

undergoes a phase transition from the absorbing phase at small q, where the stationary state

is the absorbing state, into an active stationary phase at large q, where the activities have

a finite probability to last forever.

In the situations with more than one equivalent absorbing state or when the n module

of the particle number is conserved by the dynamics of the system, a different type of

absorbing-state phase transition might take place. In particular, the so-called directed Ising

or parity conserving universality class [49, 47, 62, 66] can occur. However, most variations

of the propagation rules put the transitions into the DP universality class [66]. It is now

realized that DP critical behavior is the generic universality class for dynamic absorbing

state type processes.

1.4.1 Kinzel’s model

Consider the lattice shown in Fig. 1.7. The percolation activities only propagate upward in

the directions shown by the arrows. The vertical upward direction can be considered as the
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Figure 1.7: Lattice structure of Kinzel’s model [68]; Circles are the sites while the arrows

represent bonds. It is a square lattice tilted diagonally with activities propagate upward.

time direction. The full model consists of both the lattice sites and the bonds connecting

the sites. A site in the system can only be active with a probability q when either one of the

two bonds below it is present; and, a bond can only be present with a probability p when

the site it’s connecting to below is active. Setting p = 1 and using q as a control parameter

leads to site percolation while setting q = 1 and using p as a control parameter leads to

bond percolation [68, 33].

1.4.2 DP scaling exponents

At DP type critical points the correlation length in the time direction or the equilibration

time ξ‖ diverges. It’s related to the spatial correlation length ξ⊥ as ξ‖ ∼ ξz
⊥ with the

dynamic exponent z ≈ 1.581 [63]. For example, starting from a single seed in the absorbing

phase, the survival probability of the activities in the system obeys the scaling form

Ps(ε, t) = b−xsPs(b1/ν⊥ε, b−zt) (1.44)
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with ε = qc − q the distance from the critical point. This leads to

Ps ∼ εβ exp(
−t

ξ‖
), (1.45)

with the critical exponent β = xsν⊥. The exponential factor reflects the fact that deep

inside the absorbing phase Ps decays exponentially in time. The equilibration time diverges

at the DP critical point as ξ‖ ∼ ε−ν‖ with z = ν‖/ν⊥. At the critical point, the survival

probability decays as a power law, Ps(t) ∼ t−δ with δ = xs/z = β/ν‖.

The various scaling exponents of the DP universality class have been determined quite

accurately. For example, using the method of low density series expansions, Jensen has

studied several models in the DP universality class. He pushed the numerical accuracies

for the values of the critical exponents to more than four decimal places with ν‖ ≈ 1.7338,

ν⊥ ≈ 1.0968 and β ≈ 0.2765 [63].

While these numerical results are encouraging, the exact scaling exponents of the DP

universality class still remain unknown. Kwon et al. studied the dynamics of an interface

between different absorbing regions in models with two absorbing ground states in 1D

[70]. Consider an initial sharp interface separating the two absorbing state. The interface

will grow from a single point to an active region where sites of the two ground states are

intermixed.

Their numerical simulations of the system yield a scaling exponent x ≈ 2 of the width of

the active region W ∼ ε−x, where ε = pc−p near the DP critical point. While this seems to

suggest a new simple exponent for the DP universality class, it will be shown in appendix

A that the scaling behavior of the width is consistent with W ∼ ε−ν‖ ln(ε0/ε).

1.5 A Lattice model: step flow with random deposition

Beside Eden’s model which was mentioned previously, various model systems have been

proposed to simulate kinetic roughening phenomena. Without going into the complete list

of models that are relevant to kinetic roughening, I will focus on the details of a specific

model that will be useful for the later discussion.

Consider an interface characterized by a height variable h(x, t) defined on a one di-

mensional integer lattice {x} with the strange rule that h(x, t) is only defined on even
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(odd) x sites when the time t is even (odd). This leaves the interface steps, the difference

h(x + 1, t) − h(x − 1, t), defined only on even (odd) x sites when the time t is odd (even).

The system starts from a flat configuration with h(x, 0) = 0 and evolves with a two-step

rule as illustrated in Fig. 1.8. Consider the evolution from an even time t to the odd time

t + 1, as the height and step swap, the surface steps defined on the odd sites move by one

unit to the even sites so that material is always removed. This amounts to having positive

steps move to the right and the negative steps move to the left. This leaves the odd sites

with no steps and with well defined heights. The steps meeting at even sites have their

values added up and form one single step at each even site. Material is then deposited onto

the odd sites so that each of them have its height value increased by the random amount

η(x, t + 1), that is uncorrelated to other sites. The evolution from an odd time to an even

time is done similarly.

We define two versions of the dynamics, using discrete or continuous height variables.

In the continuous height version, h is a real number and the random variable η has an

uniform distribution between 0 and a given constant sc. As sc is the only length scale in

the h direction, we can set it equal to 1 without losing generality. For the discrete height

model, h is an integer and η = 0 or 1 with probability 1− p or p respectively.

The complicated growth rule described above actually has the simple mathematical form

h(x, t + 1) = min [h(x− 1, t), h(x + 1, t)] + η(x, t + 1) (1.46)

or equivalently,

h(x, t + 1) =
h(x− 1, t) + h(x + 1, t)

2
−

∣∣∣∣
h(x− 1, t)− h(x + 1, t)

2

∣∣∣∣ + η(x, t + 1) (1.47)

which can be regarded as a discretization of the KPZ equation (1.27).

1.5.1 Numerical results

My numerical results confirm the KPZ scaling for the both versions of the model as shown

in Fig. 1.9. The figure also shows the finite-size-scaling (FSS) estimates of the scaling

exponents α and β. The FSS plots reveal a correction to scaling to the exponents of the
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Figure 1.8: Two stage growth rule for the step flow + random deposition model; a. The

step flow, from solid line to dashed line ; b. The deposition, from dashed line to solid line;

before the growth step, heights are defined on even number sites while after the growth

step, heights are defined on odd number sites
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Figure 1.9: Finite-size-scaling (FSS) estimates of the α exponent, defined by Eq. (1.18)

and the β exponent, defined by Eq. (1.17) from Monte Carlo (MC) results of the step-flow

random-deposition (SFRD) model; Solid lines are of the continuous height version which

dashed lines are of the discrete height version

form, e.g.,

α(L) = αKPZ + AL−x (1.48)

with x ≈ 1/3. This suggests that the correction comes from the EW curvature term in the

KPZ equation and that it presents a crossover effect between the two universality classes as

will be elaborated below.

1.5.2 Corrections to scaling

For a finite system size L at a finite time t, the roughness is a function of the parameters

1/t, 1/L, and some irrelevant scaling field ν that represents the magnitude of the irrelevant

operator in the equation,

w2(t−1, L−1, ν) = b2αw2(bzt−1, bL−1, byνν). (1.49)
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For infinite systems, we can set b = t1/z so that the function can be expanded to give us

w2(t−1, 0, ν) ' t2α/z
[
c0 + c1t

yν/z
]
. (1.50)

For yν < 0, the correction to the β exponent would be given by

β = βKPZ +
ln

(
c0 + c1t

yν/z
)

ln t

' βKPZ +
c1 ln c0

c0 ln t
tyν/z. (1.51)

For the KPZ equation (1.27), invariance under the renormalization transformation requires

α− z = −yν + α− 2 = −yλ + 2α− 2. (1.52)

Since at the KPZ fixed point, yλ = 0, we have yν = 2− z = 1/2. This leads to the observed

exponent x = yν/z = 1/3 as the correction to scaling. This is the generic leading correction

of the scaling exponent for lattice models which belong to the KPZ universality class.

1.6 A surface roughening transition in one dimension

For the discrete height version of the step-flow random-deposition (SFRD) model, we can

vary the control parameter p corresponding to the deposition rate onto the interface. Since

the steps move at unit speed over the interface, at low deposition rates, the lowest height

level h = h0 is stable in the sense that any single particle falling onto it will be evaporated

away shortly in the following time step. Under this situation, the interface is said to be

pinned at the bottom layer. The interface roughness is finite and doesn’t scale with system

size. Thus the system is in a flat phase. On the other hand, if the deposition rate is high,

there is a sizable chance for islands to nucleate on the bottom layer. As the size of an island

can only decrease from the edges, before these islands can be evaporated, they’ll aggregate

and fill up the whole bottom layer. When that happens, the h = h0 + 1 layer becomes the

new bottom layer until it also vanishes. The growth rate of the interface is thus governed

by how fast a new bottom layer gets filled up.

There exists a DP type roughening transition between these two phases just as there

does in the models studied by Savit and Ziff [101], Kertész and Wolf [65], and Alon et al.

[1].
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1.6.1 Mapping to Kinzel’s model

The directed percolation aspect of the SFRD model comes from the dynamics of the bottom

layer. We can define a density function ρ0(x, t) which is 1 when h(x, t) = h0 and 0 otherwise.

Since steps flow at unit speed and the depositions happen independently, the dynamics of

ρ0(x, t) is independent of the other degrees of freedom in the system. In fact, it’s a directed

percolation process in the t direction. As shown in Fig. 1.7, the swap of even and oddness

makes a diagonally placed square lattice in the x-t plane which is identical to the site directed

percolation model studied by Kinzel et al. [68, 33]. The deposition rate p translates into

1 − q, the probability that a site is not present, in Kinzel’s model. Since it is one of the

models that have been extensively studied, the critical point of Kinzel’s model is known to

high accuracy qc = 0.7054850(15) [63]. This releases us from the burden of locating the

transition point.

1.6.2 Scaling at the transition point

At the DP roughening transition, the interface width diverges logarithmically. Numerical

investigations of poly-nucleation growth model by Kertész and Wolf reported [65] that the

roughness W 2 ∼ ln t. However, the studies of a class of sequential solid-on-solid models

by Alon et al. [2] showed that W ∼ (ln t)γ with a seemingly nonuniversal γ that has the

values of about 0.24 for their unrestricted model and 0.43 for their restricted one. Numerical

results on the SFRD model shows that the roughness scales as W 2 ∼ ln t. This agrees with

Kertész’s model.

As the dynamics of bottom layer density ρ0 decouples from the rest of the degrees of

freedom, its DP nature is in no doubt. This has been confirmed repeatedly by various

numerical investigations [2, 110, 14]. Attempts to understand this transition have been

made by putting the height variable into a hierarchy of fields ρk each representing the

density of sites at height level h0 + k which is unidirectionally coupled through ρk−1 → ρk.

As the upper critical dimension of the DP process is dc + 1 = 4 + 1, Taüber et al. [110]

and Goldschmidt et al. [44] performed ε = dc − d expansion to first order and showed that

the critical exponents β(k+1) which corresponds to the stationary density ρk in the active
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phase for k > 0 are highly reduced with β1 = 1− ε/6 + O(ε2), β2 = 1/2− ε/8 + O(ε2), and

β3 = 1/4 − O(ε). The dynamic exponent z, as well as the transition point, are found to

remain identical for all ρk.

However, our understanding of the scaling behavior for the interface roughness W 2 at

the transition point remains only numerical. No theoretical explanation has been offered

for what gives rise to the logarithmic divergence in time, and the logarithmic dependence

on the sizes of finite systems has not been confirmed.

1.7 Propagation of avalanche front

Imagine an avalanche event in a sandpile model. Although the avalanche cluster can be large

and span the entire system, the actual toppling activities at any given moment in time are

usually more localized. The toppling fronts are usually objects of lower dimensionality and

involve only a few degrees of freedoms. This motivates the approach to understanding the

properties of the avalanches through the understanding of front propagation. In the regular

sandpiles, a single avalanche often generates more than one of such front, each is sweeping

through the system just once. These fronts are recognized as the so-called toppling waves

by Priezzhev et al. [98]. They showed that in the BTW sandpile model one can decompose

an avalanche into waves of topplings and they proved that in each of these waves, a given

site will only topple once while the activity propagates away from the triggering point just

like the ripple of a stone thrown into a pond. However, unlike the latter, the shape of the

front might distort and fragment in time.

In directed avalanche systems, the causal nature in the propagation direction allows us to

perform the toppling in a row-by-row fashion and this effectively leads to just one single front

for each avalanche. While the dynamics of self-organized criticality is iterative and nonlocal,

the evolution of a single front line is local owing to the toppling dynamics. Additionally,

the propagation of a front line only depends on the configuration of the toppling row y and

the receiving row y + 1, with no dependence on positions before y. Thus the process can

be considered to be Markovian in this respect. To make this idea concrete, let’s consider a

system configuration at the y-th row that is given by z
(y)
i and ẑ

(y)
i after and before the i-th
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avalanche. That is, in the i-th avalanche, the configuration at row y makes the transition

ẑ
(y)
i (x) → z

(y)
i (x). (1.53)

For directed local toppling rules, the pre-toppling configuration ẑ
(y)
i only locally depends on

the pre-toppling configuration ẑ
(y−1)
i of the previous row and the post-toppling configuration

z
(y)
i−1 in the previous avalanche. This allows to write down a general discrete Langevin

equation of the form

ẑ
(y)
i − ẑ

(y−1)
i = F [ẑ(y−1)

i , z
(y)
i−1, η

(y)
i ] (1.54)

where η accounts for the randomness in the toppling process. Since z
(y)
i−1 is already deter-

mined by the previous avalanche, it can combined with η to give an effective noise function

η̃ in Eq. (1.54). In continuous form, Eq. (1.54) can be rewritten as

∂ẑ
(y)
i

∂y
= F̃ [ẑ(y)

i , η̃
(y)
i ] (1.55)

which gives us the general form of Eq. (1.13).

The caveat in the above approach is that the effective noise η̃ in Eq. (1.55) is not always

as simple as it is in the case of Eq. (1.11) where it’s uncorrelated. Since the effective noise

is related to the previous stable configuration of the system, if the stationary state of the

system is nontrivial, we should expect to have a nontrivial effective noise, too. Under the

situation, large corrections to the scaling behavior from the näive local interface dynamics

will result. But, we shall show that for avalanche systems with essentially compact avalanche

clusters, this correction is irrelevant in the thermodynamic limit. Thus it does not hinder

the validity of classifying these directed avalanche systems by the universality classes of

their underlying interface dynamics.

1.8 Summary and preview

The theme of this thesis is to establish a mapping between avalanche systems and interface

growth models as outline in the previous section. In the next chapter, I will formulate this

mapping using a sandbox system as a paradigm. The interface dynamics that underlies the

lattice sandbox model is that of the step-flow random-deposition model which we discussed
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in Sec. 1.5 where we also established that it belongs to the Kardar-Parisi-Zhang universality

class with typical corrections to scaling coming from the influence of the Edwards-Wilkinson

fixed point.

This mapping allows us to predict the scaling exponents of the avalanche distributions

based on those of the underlying interface model. However, the numerical results of the

exponents show a small but significant deviation from their predicted values. I will address

the issue of this deviation in chapter 2 and show that it is a large correction to scaling

due to the scarring of the the sand surface by the iterative avalanche process. In the

thermodynamic limit, the scaling exponents of the avalanches should remain as predicted.

The underlying interface model of the discrete-height sandbox model undergoes a contin-

uous phase transition of directed percolation nature as described in Sec. 1.6. In chapter 3, I

will show that this model can be used to describe the avalanches of granular materials with

variable cohesiveness. The continuous phase transition in the interface model corresponds

to the transition in a granular system from a phase of shallow avalanches to a phase of deep

avalanches when the cohesiveness is increased. I will also show that the prediction based on

the mapping between avalanche systems and interface models remains valid in both phases

and also at the transition point. However, the mass hyperscaling relation, which is estab-

lished in chapter 2, based on the compactness of the avalanche clusters is broken at the

transition point due to the fractal property of the avalanche clusters.
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Chapter 2

DIRECTED AVALANCHE PROCESSES WITH UNDERLYING

INTERFACE DYNAMICS

In this chapter, we describe in more details the directed avalanche model; a slowly

unloading sandbox driven by lowering a retaining wall. The directness of the dynamics

allows us to interpret the stable sand surfaces as world sheets of fluctuating interfaces in

one lower dimension. In our specific case, the interface growth dynamics belongs to the

Kardar-Parisi-Zhang (KPZ) universality class. We formulate relations between the critical

exponents of the various avalanche distributions and those of the roughness of the growing

interface. The nonlinear nature of the underlying KPZ dynamics provides a nontrivial test

of such generic exponent relations. The numerical values of the avalanche exponents are

close to the conventional KPZ values, but differ sufficiently to warrant a detailed study of

whether avalanche-correlated Monte Carlo sampling changes the scaling exponents of KPZ

interfaces. We demonstrate that the exponents remain unchanged, but that the traces left

on the surface by previous avalanches give rise to unusually strong finite-size corrections to

scaling. This type of slow convergence seems intrinsic to avalanche dynamics.

2.1 Introduction

Avalanche phenomena are common in nature. Examples range from accumulating snow on

mountain slopes, slow shearing between continental plates [21], rerouting in river networks,

to creeping magnetic flux lines in super conductors [8]. Following the work by Bak et al.

[5], physicists aim to capture the essential aspects of such dynamical systems with simple

automaton processes, commonly referred to as sandpile models and self-organized criticality

(SOC). Impressive successes have been achieved, like reproducing power-law distributions

in avalanche events similar to those observed in nature, and the start of a classification
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scheme of such processes in terms of so-called universality classes [13]. Unfortunately most

of these are numerical in nature. Analytical exact results remain rare.

Directed avalanche phenomena form a subclass of these SOC processes. Dhar and Ra-

maswamy introduced the first directed sandpile model and solved it exactly [32]. This was

possible because in their model the avalanche propagation is governed solely by its two

edges, and those two follow independent random walk dynamics. Tadić and Dhar intro-

duced a directed model in which particles are allowed to pile up beyond the critical height,

by replacing the automaton’s deterministic toppling rule by a stochastic one [107]. The den-

sity of critical sites tunes itself and at distances far from the driving edge the propagation

of active sites approaches the directed percolation [68] threshold. The scaling properties

of the avalanche distributions are thus linked to the critical exponents characterizing the

DP universality class. Another example of a stochastic directed avalanche process is the

model introduced and studied numerically by Pastor-Satorras and Vespignani [95]. Simi-

lar as in the above model by Dhar and Ramaswamy, the stable landscape configurations

(between avalanche events) lack internal correlations in the stationary state. This allowed

Paczuski and Bassler [91] and also Kloster et al. [69] to link this dynamic process to so-called

Edwards-Wilkinson [35] (EW) interface growth and to derive the exact scaling exponents

of the avalanche distributions.

This novel world-sheet-type connection between avalanche dynamics and interface growth

is particularly promising, because interface dynamic processes such as EW and Kardar-

Parisi-Zhang [64] (KPZ) growth are very well understood, in particular, in 1+1 dimensions

(1+1D) where the scaling properties are known exactly. However, the above models that

are linked to EW-type growth are rather poor examples, because EW growth is described

by a simple linear stochastic (diffusion-type) Langevin equation; correlations factorize, and

important caveats in the relation to avalanche dynamics can be obscured by this simplicity.

We set out to generalize this approach to nonlinear interface dynamic processes, and

recently introduced a directed unloading sandbox model [23] in which the two-dimensional

(2D) avalanche dynamics relates to 1+1D KPZ-type interface growth. We derived exponent

relations between the avalanche and interface growth scaling properties, which are generic,

and valid beyond our specific model. Our numerical results for the avalanche distributions
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(for length, width, depth, and mass) follow indeed these exponent relations. Moreover,

the avalanche critical exponents obey the predicted KPZ values within a few percent, an

accuracy typical to avalanche simulations. However, our numerical accuracy is better than

that; mostly because of a careful finite-size scaling (FSS) analysis. The exponents seem to

converge to values that are slightly different from the KPZ values.

This left us with a puzzle. What is the origin of these small deviations? Is this a

fundamental effect; or do the exponents ultimately converge to the KPZ values, but with

unusually large corrections to scaling. In this chapter, we address these issues. We also

provide a more detailed discussion of these world-sheet-type relationships between avalanche

and interface growth dynamics.

The fundamental difference between conventional KPZ interface growth and avalanche

dynamics arises from the averaging process over KPZ-type space-time world sheets. In

normal Monte Carlo (MC) simulations of interface growth the distribution functions are

determined in terms of ensemble averages over a set of totally uncorrelated space-time MC

runs. In contrast, the avalanche dynamics gives rise to KPZ world sheets that are strongly

correlated. Two subsequent MC runs are identical except inside a single avalanche area.

This difference in averaging, uncorrelated versus avalanche-correlated MC runs, therefore

emerges as a key issue for understanding the scaling properties of avalanche dynamics. This

issue did not arise in the earlier EW-type avalanche models due to the linear nature of

the EW process. However for nonlinear dynamics, such as KPZ, avalanche-correlated-type

sampling could well lead to novel interface scaling exponents.

Speaking against a shift in the values of the exponents, are arguments that: the KPZ

stationary state, i.e., the sand surface profile far away from the driving edge, can not be

affected by the avalanche-correlated-type averaging, because large avalanches that span the

entire width of the box occur periodically. These completely refresh the surface far away

from the driving edge regularly, and thus wipe out all correlations between MC runs. This

suggests that we are only dealing with much larger than usual corrections to scaling. The

details are more complex than this simple argument, but we will establish that indeed the

exponent values do not change.

This chapter is organized as follows. In the following section, we present the unloading
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sandbox model. In Sec. 2.3, we comment on how directed avalanche dynamics can be linked

to interface growth in one lower dimension. Next, in Sec. 2.4, we show that in the interface

growth interpretation our specific model belongs to the KPZ universality class. In Sec. 2.5,

we derive the generic exponent relations between interface growth and directed avalanche

dynamics, and in Sec. 2.6 we test this numerically for our specific model.

In the second half of this chapter, we address the small deviations in the numerical

values of the exponents from those of conventional KPZ growth. In Sec. 2.7, we present

numerical results detailing how the traces left on the surface profile by previous avalanches

influence both the avalanche exponents and the interface growth ones. These scars in the

rough surface enhance the surface roughness. We cast this enhanced interface roughness

in terms of corrections to scaling, and determine what value the critical dimension of the

corresponding irrelevant operator Osc (in the sense of renormalization theory) should have.

Next, in Sec. 2.8, we identify the geometric meaning of Osc, starting with a study of the

one dimensional version of our model where a similar phenomenon takes place. In 1D the

interface growth process is a simple random walk, and the avalanche-correlated sampling

relates to the scaling properties of merging random walkers. Osc represents the distribution

of avalanche end points in the 1D surface, and can be studied directly from the rounding

of the surface profile near the driving edge. In Sec. 2.9, we return to the full 2D case. The

scars of previous avalanches form lines on the surface. We identify Osc with the angle these

lines make with respect to the direction perpendicular to the driving edge, and confirm with

an analytic argument that the critical dimension of Osc is equal to xsc = −z with z the

KPZ dynamic exponent. Finally, we summarize our results in Sec. 2.10.

2.2 An unloading sandbox

Imagine a box filled with granular material, as illustrated in Fig. 2.1. One of its four

retaining walls is slowly lowered, such that the sand spills out from that side, and thus

slowly unloads the box and establishes a sloped surface. In the quasistatic limit, the wall

moves slow enough that the unloading events can be described as distinct avalanches. The

box can be three dimensional, leading to 2D avalanche dynamics on a 2D surface, or can be
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Figure 2.1: Sandbox with a slowly lowering retaining wall.

2D (like in a very narrow box) giving rise to 1D avalanches on a 1D surface.

Inspired by this we consider a so-called solid-on-solid model defined on a 2D lattice.

Height variables h(r) are defined on a square lattice. We will consider two versions of

the model. In the continuous height version, the heights are real numbers. In the discrete

model, the heights are integers h(r) = 0,±1,±2, . . .. The former corresponds to a continuous

material without internal structure, but strong cohesion up to a specific length scale sc, while

the latter corresponds to layered material where the surface height is quantized.

The 2D lattice is rotated diagonally such that the propagation direction of the avalanche

is along the diagonal direction denoted by y. This is the direction in which the avalanche

will run. Throughout this chapter the coordinate perpendicular to y will be denoted by x.

Figure 2.2 illustrates this geometry.

The configurations are subject to the following stability condition. The column of parti-

cles on site r = (x, y) is supported by the two columns rl = (x−1, y−1) and rr = (x+1, y−1)

directly below it and is stable when its height is less than the minimum of the heights at
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Figure 2.2: Lattice structure of sandbox model in 2D.

these two supporting sites increased by a fixed amount:

h(r) ≤ min [h(rl), h(rr)] + sc, (2.1)

where sc is a constant. In the version of our model where the heights are continuous

variables, sc represents the only length scale in the h direction and can be set equal to 1

without the loss of generality. Throughout this chapter we will also set sc = 1 in the discrete

h model.

Consider a stable configuration, after t̃− 1 avalanches. The t̃th avalanche is triggered at

the highest site r = (xt̃, 0), on the y = 0 driving boundary (or, in the discrete height model,

by randomly choosing one of the highest sites) and reducing its height by a random amount

0 < ηt̃ ≤ sc. This likely creates unstable sites in the next y = 1 row. Those are updated

by replacing their height by an amount equal to the lowest of the two supporting columns

in the previous row and then adding an uncorrelated random amount 0 ≤ η(r) ≤ sc with

uniform distribution, as

h(r) → min [h(rl), h(rr)] + η(r). (2.2)

This updating continues row by row until all the sites are stable again. Only after that the
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next avalanche is started. The toppling of a site only affects the stability of the two sites

immediately above it in the next y row. Therefore we can update the system row by row

in increasing order of y.

Direct experimental realizations of this unloading sandbox model are not our immediate

concern (the focus is on establishing a generic theoretical relationship between avalanche

dynamics and interface growth), but we expect that this model is applicable to actual

experimental unloading sandboxes. One of the most important issues in this context is the

row-by-row nature of the toppling rule. This is a crucial feature for our purposes, allowing

the identification with KPZ interface growth (in the following section). In real unloading

sandboxes the sand removed from row y rolls down hill and likely disturbs the already

stabilized lower surface levels. Experimental realizations can avoid this from happening,

e.g., by choosing very light grains (compared to the cohesion forces). Note that our dynamic

rule does not allow the buildup of any pockets (deeper than sc) on the surface that might

trap such downward rolling grains.

Conservation laws are crucial to avalanche dynamics. Unlike most avalanche processes,

our model does not conserve mass while the avalanche propagates. That might raise the

specter of our model not being (self-organized) critical. The connection to KPZ growth (an

intrinsic critical process) dispels this phantom. Moreover, the global slope of the surface is

preserved during each avalanche run, and conservation of steps in the profile plays the role

analogous to conservation of mass.

In a typical SOC process, the quasistatic limit must be taken such that the surface regains

full stability before a new grain is being removed at the driving edge. Since avalanches

of all sizes appear, this means that the velocity of the lowering wall should be inversely

proportional to the size Lx × Ly of the box. Our process, however, is Markovian, i.e., row

by row in the y direction. Removal of particles in row y does not affect the stability of the

lower levels. In that case the lowering velocity needs only be inversely proportional to Lx.

The analysis of the dynamics involves distribution functions of various characteristic

features of the avalanches, The common examples are: length, width, depth, and mass.

The avalanche length l will be defined throughout this chapter as the maximum distance y

the avalanche travels from the driving edge; the width w as the maximum departure of the x
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coordinate (perpendicular to the propagation direction) from the trigger point x coordinate;

the depth δ as the maximum height change the avalanche creates at any of the affected sites;

and the mass m as the total amount of material removed by the avalanche. All the above

are dimensionless quantities measuring the numbers of lattice spacings (or multiples of sc

in the h direction) in our numerical presentations.

2.3 Avalanches versus epitaxial interface growth

The focus of this chapter is on how the above avalanche dynamics relates to interface

growth in one lower dimension. Each stable sloped surface configuration of a directed

sandpile can be reinterpreted as a world sheet (space-time configuration) of an interface in

one lower spatial dimension. The direction in which the avalanches propagate plays the role

of time and the perpendicular coordinates the role of space. Our 2D unloading sandbox is

equivalent to a 1D growing interface. Such an interpretation makes sense only when the

stability condition and the avalanche dynamic rule is directional and local in space time,

such that causality is not violated in the interface growth interpretation. The stability

condition (2.1) and toppling rule (2.2) of our model are row by row in nature and therefore

indeed Markovian in this sense.

Every stable configuration of the sandpile represents a possible interface growth lifeline

(space-time-evolution interface world sheet). The conventional procedure for determining

the scaling properties of growing interfaces is to average over a large set of completely in-

dependent MC runs. This would mean, in sandbox language, an ensemble average over

completely refreshed surfaces, each totally uncorrelated from the previous one (except typi-

cally for the initial condition in row y = 0). The toppling rule (2.2) is applied to all sites in

every row, and repeated row by row, instead of only the unstable sites created by toppling

only the highest site in the initial row.

In avalanche dynamics, however, two subsequent growing interface lifelines in this en-

semble differ only inside the avalanche area. From the interface growth perspective this

represents a rather peculiar and dangerous correlated-type MC run averaging procedure.

The MC runs of KPZ space-time configuration are strongly correlated, and this raises the
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specter of a change in the interface roughness scaling properties. The numerical evidence,

presented below is sufficiently ambiguous that this issue will preoccupy us in the second

half of this chapter.

2.4 KPZ growth

In this section, we demonstrate that the interface growth model conjugate to the unloading

2D sandbox belongs to the 1+1D KPZ universality class. The time evolution of the interface

is governed by the toppling rule of the sand model with y in Eq. (2.2) representing time t,

h(x, t + 1) = min [h(x + 1, t), h(x− 1, t)] + η(x, t). (2.3)

In the conventional global-type interface evolution (i.e., totally refreshing non-avalanche-

type uncorrelated MC runs) every site in row t + 1 is updated according to this rule.

Figure 2.3 illustrates the interface dynamics for one time step, t → t + 1. Conceptually,

the time step can be split into two parts; the deterministic min[ ] operator part and the

stochastic random deposition η part.

Note that because of the diagonal orientation of the square lattice (see Fig. 2.2), the

lattice sites are not “stationary in time.” The conceptually easiest interpretation to resolve

this flip-flopping is to first double the number of lattice sites and then to require them to

be paired alternately with their right or left neighbors at even and odd times; at even times

sites 2n and 2n + 1 are fused to be at equal heights and at odd times the 2n − 1 and 2n

sites.

The upper panel shows the deterministic first half of the update (from the drawn to the

dash line). The partners switch and the min[ ] operation equalizes their heights by choosing

the lowest of the two, so this step always removes material.

This can be interpreted also in terms of a movement of the steps in the interface. All

up steps move to the right and all down steps to the left; while up and down steps merge

when they meet at one site.

The lower panel illustrates the second half of the update. The height of each fused pair

increases by a random amount 0 ≤ η ≤ sc.
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Figure 2.3: The interface growth dynamics described by Eq. (2.3) with upper panel showing

movement of steps (from the drawn to dashed line) and lower panel random depositions

(shaded area) to the interface.
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Deposition-type interface dynamics like this typically belongs to the KPZ universality

class [64]. Indeed, Eq. (2.3) can be rewritten as

h(x, t + 1) =
1
2

[h(x + 1, t) + h(x− 1, t)]

− 1
2
|h(x + 1, t) + h(x− 1, t)|+ η(x, t), (2.4)

and from this it can be easily identified to be a discrete form of the KPZ Langevin equation,

∂h

∂t
= ∇2h− λ

2
|∇h|2 + η. (2.5)

The crucial point is that the coefficient of the nonlinear term λ is clearly present. There

is no hidden special symmetry of some kind that makes it vanish by accident. At λ = 0,

the KPZ equation would reduce to EW growth.

To confirm the KPZ nature and make sure that the λ is large enough that corrections

to scaling from the EW point (λ = 0) are not obscuring the KPZ scaling, we perform MC

simulations on the interface dynamics as illustrated in Fig. 2.3. The MC runs are completely

independent.

We measure the time evolution of the interface width W defined as

W 2(Lx, t) ≡ 〈(h− h̄)2〉 (2.6)

with over bars (angle brackets) indicating average over x (ensemble). Starting from, e.g., a

flat initial condition it should scale as

W ∼ tβ (2.7)

at intermediate times 0 ¿ t ¿ Lz
x, and saturate at

W ∼ Lα
x (2.8)

for t À Lz
x; with Lx the length of the 1D interface. The exponents for the KPZ universality

class in 1+1D are known exactly with α = 1/2, β = 1/3, and z ≡ α/β = 3/2.

The numerical results are shown in Fig. 2.4. The values of α(Lx) are obtained from

the saturated interface widths by imposing the scaling form (2.8) at adjacent values of

the system size Lx. Similarly, the values of β(t) are obtained from the transient interface
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Figure 2.4: MC results for the global interface width: left, finite-size (Lx, in the unit of

lattice spacing) estimates for the saturated surface width exponent α; right, finite-time (t,

in MC time steps) estimates for the transient interface width exponent β from a flat initial

configuration. The solid (dashed) curves are for continuous (discrete) height model.

widths by imposing the scaling form (2.7) at nearby times t. We like to remind the reader

that simple log-log plots of W versus Lx and t look typically impressively straight, but are

notoriously inaccurate. The construction of effective exponents, in the above manner might

at first glance look less impressive (the data appears noisier), but this brings the analysis

to a higher level where the leading corrections to finite-size and finite-time scaling become

visible.

The approach to Lx →∞ in Fig. 2.4 is consistent with the leading correction to scaling

exponent yir = −1/2 expected from the EW term ∇2h in Eq. (2.5). The corrections to FSS

are stronger when the height variables are discrete than when they are continuous. This is

consistent with the smaller growth rate in the discrete height interface, and the fact that the

growth rate is typically proportional to the nonlinear term λ. On average, more material is

removed during the first deterministic part of the update process when the surface heights

are discrete.
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2.5 Scaling properties of 2D avalanches

In this section, we derive the exact relations between the scaling properties of the avalanches

and 1+1D KPZ interface growth. However, in the latter the world sheets are sampled in

the correlated manner as outlined in Sec. 2.3.

The characteristic feature of SOC is the lack of typical avalanche length, width, depth or

mass scales. The probability distributions follow power laws. For example, the distribution

of avalanche widths scales as

Pw ∼ w−τw (2.9)

with scaling exponent τw. Similarly, the avalanche length, depth, and mass distributions

scale as power laws with exponents τl, τδ and τm. We can summarize this in a metadistri-

bution function P (l, w, δ); the probability to find an avalanche of a specific width w, length

l, and depth δ obeys the scaling relation

P (l, w, δ) = b−σP (b−zl, b−1w, b−αδ) (2.10)

with b an arbitrary scale parameter. The exponents σ, z, and α are expected to be robust

with respect to details of the dynamic rule, and thus are characteristic of the universality

class to which this avalanche dynamics belongs. Single parameter distributions, such as Pw,

follow by integrating out the other variables. This implies the following expressions for the

τ exponents:

τl =
σ − 1− α

z
, τw = σ − z − α, τδ =

σ − 1− z

α
, (2.11)

or inverted,

z =
τw − 1
τl − 1

, α =
τw − 1
τδ − 1

, σ = τw + z + α. (2.12)

Let us presume that the avalanches are compact, i.e., that the inside and the boundaries

of an avalanche are well defined and distinguishable (unlike in certain fractal structures),

and that the sizes of the holes (unaffected regions) inside the avalanche do not scale with

the avalanche size. This can be checked visually from typical simulation configurations, and

both assumptions are indeed satisfied in our dynamics at least qualitatively. In that case,

the mass of the avalanche must scale as m ∼ lwδ, such that the critical exponent of the
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distribution of avalanche masses Pm ∼ m−τm obeys the identity

τm =
σ

1 + z + α
. (2.13)

There is one more relation between these critical exponents (leaving only two indepen-

dent ones). The avalanche is initiated by lowering the bar at the driving edge of the box.

In the stationary state the average surface profile is invariant, and therefore it shifts down

at the same rate as the lowering bar. Thus we know how much mass drops out of the box

on an average.

To be more precise, during each avalanche event, the height of only one single boundary

site at y = 0 is lowered by, on average, an amount sc/2. For a sandbox of width Lx the

boundary row is lowered by sc/2 after Lx avalanches. In the stationary state, the entire

surface matches this lowering speed, such that the amount of removed sand is on average

equal to LxLysc/2. Therefore, the average mass of each avalanche must be equal to

〈m〉 =
1
2
scLy. (2.14)

The scaling properties of the mass distribution function tie into this because

〈m〉 =
∫

m′Pm(m′)dm′, (2.15)

which can be evaluated using the metadistribution function as

〈m〉 ∼
∫ Ly

0
dl

∫ ∞

0
dw

∫ ∞

0
dδ lwδP (l, w, δ)

+ mLy

∫ ∞

Ly

dl

∫ ∞

0
dw

∫ ∞

0
dδ P (l, w, δ). (2.16)

This equation incorporates finite-size effects. The box is presumed to be wide and deep

enough, such that the length Ly of the box (in the direction perpendicular to the driving

edge) is the only limiting finite-size factor. The first term in the above equation accounts

for all avalanches that fit inside the box and the second term for the ones that reach the Ly

edge, and thus are prematurely terminated. The first integral scales as L
(−σ+2+2z+2α)/z
y for

large Ly. The second term scales with the same power because the second integral scales

as L
(−σ+1+z+α)/z
y , while the mass factor in front of it scales as m ∼ lwδ ∼ L

(1+z+α)/z
y . The

result

〈m〉 ∼ L(−σ+2+2z+2α)/z
y , (2.17)
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when compared to Eq. (2.14), yields the exponent identity

σ = 2 + z + 2α. (2.18)

The validity of these exponent identities goes well beyond our KPZ-type unloading

sandbox. For example, the EW-type directed avalanche models by Paczuski and Bassler

[91] and Kloster et al. [69] obey our Eq. (2.11) when we substitute for z and α the EW

values (z = 2, α = 1/2). The scaling exponents of the original Dhar-Ramaswamy model

can be described by the same equations with z = 2, α = 0 as well.

2.6 Numerical results for 2D sandbox avalanches

The discussion of the previous section leaves us with two independent avalanche critical

exponents, α and z. The notation anticipates their identification with the scaling properties

of a rough interface in interface growth. There, α is the scaling exponent of the interface

width and z the dynamic critical exponent. Indeed, the interface width relates to the depth

of the avalanche, and time to the length of the avalanche. We expect therefore that α and

z take same values as in 1+1D KPZ growth, α + z = 2 and α = 1/2.

We perform MC simulations on the sandbox avalanche model and measure the avalanche

metadistribution function P (l, w, δ|Ly) [see Eq. (2.10)]. The sandbox is always taken wide

and deep enough such that the box length Ly acts as the only FSS-type limiting factor. We

average over 231 avalanches. The reduced distributions, such as Pl ∼ l−τl , follow from the

metadistribution from, e.g., summation over w and δ.

Figure 2.5 shows FSS approximates for the τ exponents. They are constructed as follows.

Power-law-decaying objects such as Pl ∼ l−τl are almost always subject to crossover-scaling-

type effects, i.e., subdominant additional power-law terms. In the language of renormaliza-

tion theory they originate from so-called irrelevant scaling fields and also from nonlinear

scaling field effects. This is well documented in equilibrium critical phenomena, but most

recent nonequilibrium scaling studies ignore this systematic effect, e.g., by simply making

a log-log plot of Pl as function of l and drawing a least-square-fitting-type straight line

through the data. Such results show very little statistical noise, but can give rise to signif-

icant systematic errors. An example of the importance of corrections to scaling, was the
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Figure 2.5: FSS plots for the τ exponents of 2D sandbox model. The solid (dashed) lines

are for continuous (discrete) height model.
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large spread in reported values of the stationary state roughness exponent α between var-

ious 2D KPZ-type-growth lattice models, which was resolved using a similar FSS analysis

as presented here [24].

In the limit of large l the subdominant additional power-law terms fade away. So, more

weight must be put on the large l part of the data than on the short l section. However, it

is a balancing act, because at large l the results become noisier, since few avalanches reach

that far.

The total number of avalanches that reach beyond y scales as

Ql(y) =
∫ ∞

y
Pl(l)dl ' A

τl
y−τl+1, (2.19)

if the fraction of avalanches of length y scales as Pl ' A y−τl (these are only the leading

terms). We construct a y dependent approximate for the exponent τl from the ratio of these

two quantities, as

τl(y) =
lPl(y)
Ql(y)

(2.20)

The results are shown in Fig. 2.5. (We do the same for the other distributions.) Plots

such as this are intrinsically noisier than conventional simple log-log type of plots of the

distributions, but they contain much more information. The variation with y reflects the

leading corrections to scaling. The statistical noise at large y could be suppressed by running

the MC simulation longer. The simulation time is the only limiting factor. We used 231

avalanches and in that case, Ly = 512 is the optimal box size.

In Fig. 2.6, we replot the same data in terms of α, z, and σ, following Eq. (2.12) and

using the same type of FSS analysis. From the trend of the curves, we conclude that

α = 0.46 ± 0.01, z = 1.52 ± 0.02, σ = 4.43 ± 0.05, and τm = 1.48 ± 0.01. This means

that the exponent relations (2.13) and (2.18) are satisfied well within the statistical noise

limitations, i.e., within a few percent.

Surprisingly, the actual values for z and α, although close, differ significantly from the

exactly known 1+1D KPZ values, α = 1/2 and z = 3/2. They deviate more than warranted

from statistical noise alone, and do not converge smoothly if the KPZ values are correct. The

approximates for α actually undershoot the KPZ value α = 1/2, and those for z overshoot

z = 3/2. This systematic effect needs to be explained. It could be that the exponents
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Figure 2.6: Effective scaling exponents derived from stationary avalanche distributions of

sandbox systems. The solid (dashed) lines are for continuous (discrete) height model.
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differ in a fundamental manner from the conventional KPZ values, or that we are looking at

unusually large and slow corrections to FSS. The smallness of the deviations makes the latter

more likely (except when this happens to be a continuously varying exponents scenario).

We will blame the correlated MC averaging feature for this, but it should be noted that

avalanche distributions are intrinsically more sensitive to FSS effects than global interface

features. Many avalanches in the ensemble are small compared to the global box size,

and therefore sample and average the KPZ scaling properties over much smaller lengths

and shorter time scales than in a conventional global interface roughness analysis at a

comparable space-time box size.

One option is to push the run button on the computer and out perform all corrections

to FSS. Unfortunately, it would require extremely long MC times to create large numbers of

such large avalanches. It is doubtful that we would be able to get far enough in a reasonable

time span. Moreover this approach is intellectually unappealing. We prefer to search for

the origin of the deviations in the exponents.

2.7 Avalanche-correlated MC runs

The basic premise of our exponent identities is that avalanches are like any other fluctuation

on a 1+1D KPZ-type world sheet. Initially flat KPZ interfaces (the sand surface next to

the driving edge) roughen in time (moving away from the driving edge) in such a manner

that at (KPZ) time y the stationary state roughness is established within a length scale

lx ∼ y1/z. This defines a so-called spreading cone. The avalanches are expected to follow

the same pattern. However, the avalanche cone seems to spread slightly faster, since the

above avalanche value for z slightly exceeds the conventional KPZ value, and inside the

avalanche the surface seems to be slightly less rough, since the avalanche value for α is

slightly smaller.

In this and the following section, we will establish that this is caused by correlations

with previous avalanches. The new avalanche does not run its course on a pristine fresh

KPZ interface world sheet but on an aged one scarred by previous avalanches.

There are two obvious tests to address the effects of these scars. The first one is to
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determine the avalanche distributions for only the first avalanche on a fresh KPZ world sheet

(the initial condition), i.e., to refresh the entire surface completely after each avalanche. The

results are shown in Fig. 2.7. The first avalanches likely follow normal KPZ exponents: z

converges now smoothly towards z = 3/2; while the FSS approximates for α, although still

too small, start to turn towards α = 1/2, and do not cross that value anymore. It should be

noted that the FSS corrections are expected to be larger, and that the data is noisier than

in Fig. 2.6, because although we ran the same number of avalanches (231), the fraction of

large avalanches is smaller, leading to smaller and noisier amplitudes in the power-law tails

of the distributions.

The second test of the role of the scars is to measure the global interface roughness for

avalanche-type correlated MC runs instead of completely refreshing MC runs. The upper

panel of Fig. 2.8 shows the global interface width W 2 as function of time for several Lx’s. The

drawn lines correspond to avalanche-correlated MC runs and the dashed line to conventional

uncorrelated MC averaging. The drawn lines have bumps, i.e., the avalanche-correlated runs

lead to rougher interfaces at intermediate times.

This enhanced interface roughness is caused by the scars left by earlier avalanches. The

scars vanish at very large y because avalanches reaching that far span the entire system in

the x direction. Figure 2.9 shows a typical configuration of scars. The lines are the traces

of previous avalanches, i.e., their edges. Latter avalanches wipe them out partially.

For finite system sizes, the stationary state interface width follows from the plateaus at

large times. There the avalanche-correlated and uncorrelated MC curves coincide. This is

to be expected, because the large avalanches that span the entire system (in the x direction

at large y) occur at regular MC time intervals, such that the large y part of the surface (i.e.,

the stationary state of the growth process) is completely refreshed periodically and therefore

sampled effectively like in uncorrelated MC runs. As a result, the roughness exponent α,

defined by Eq. (2.8), is the same for the both cases.

Most avalanches do not extend into that large y part of the surface. They terminate in

the scarred part of the surface. Therefore, we define an alternative roughness exponent α∗,



61

0 0.1 0.2
1/w

0.45

0.5

α

0 0.1 0.2
1/w

1.3

1.4

1.5
z

0 0.1 0.2
1/w

4.4

4.6

σ

0 0.1 0.2
1/w

2

2.1

2.2

σ-z-2α

Figure 2.7: Effective scaling exponents derived from the distributions of first avalanches

on fresh sandbox surface for the continuous height model.
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Figure 2.9: A typical configuration of the scars on the sandbox created by the avalanches.

The driving edge is located at the bottom of the graph while avalanches propagate upward

in the y (or t) direction. The system sizes are Lx = 256 and Ly = 512.
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Figure 2.10: Finite-size approximates of the scaling exponents for stationary surface of

sandbox (or correlated MC runs for the interface model) with α∗ defined by Eq. (2.21) and

β by Eq. (2.7). The solid (dashed) curves are for the continuous (discrete) height model.

associated with the scaling of the bumps, in terms of the maximized width

W ∗ ≡ max
y

W (Lx, y) ∼ Lα∗
x (2.21)

more relevant for the avalanche scaling properties. Note that for uncorrelated MC runs,

α∗ = α, since the interface width increases monotonically in time.

The conventional method for measuring the exponent β, involves the slope at times

y < Lz
x, and thus is sensitive to the bumps in W as well. The results are shown in Fig. 2.10.

Compared to those in Fig. 2.4, they clearly converge less smoothly, with larger corrections

to scaling and we should wonder if they converge to the conventional exact KPZ values,

α = 1/2 and β = 1/3, at all.

In the lower panel of Fig. 2.8 we plot ∆W 2 as function of time, the difference between

the squared widths of avalanched-correlated MC runs (the drawn lines in the upper panel)

and completely uncorrelated MC runs (the dashed lines in the upper panel). For infinite

system size, ∆W 2 scales as ∆W 2 ∼ ys with an exponent that numerically is very close to

s ' 1/3. Since the width itself scales as W 2 ∼ y2/3, it follows that the bumps in the width
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curves are a transient FSS effect.

This settles our basic issue at the numerical level; the avalanche-correlated nature of

the MC runs does not change the interface scaling exponents, but only gives rise to slow

corrections to FSS. In the next two sections we will identify these corrections to scaling with

the scars on the surface left behind by previous avalanches.

We start this analysis here by casting the deviations into the framework of corrections

to scaling from a so-called irrelevant operator in the sense of renormalization theory. Let

Osc(x) be that irrelevant operator and u be its scaling field. This amounts to presuming

that the avalanche correlation between MC runs can be represented effectively by adding

to the KPZ Langevin equation (2.5), a term uOsc(x). We will have to determine below

how Osc(x) is related to the density of scars on the interface space-time world sheet left

by previous avalanches. According to scaling theory, the presence of such a term to the

Langevin equation leads to corrections to scaling in the interface width as

W 2(Lx, y, u) = b2αW 2(b−1Lx, b−zy, byscu), (2.22)

i.e., in the infinite-size limit, Lx →∞, to

W 2(y, u) = y2α/zS(yysc/zu), (2.23)

and by expanding the scaling function S, while assuming that ysc < 0, such that u = 0 is a

stable fixed point, and the argument yysc/zu is a small parameter, to

W 2(y, u) = y2α/z
[
S(0) + yysc/zuS′(0) + · · ·

]
. (2.24)

The critical exponent ysc of this irrelevant scaling field must take the value ysc = −α to

account for the ∆W 2 ∼ y1/3 corrections in the interface width we found above. Moreover

the operator must scale as

Osc(x) ∼ b−xsc (2.25)

with critical dimension xsc = z, since the KPZ equation (2.5), implies that the terms uOsc(x)

and ∂h/∂t must scale alike. In the following two sections we will trace down the geometric

identity of this mysterious operator Osc, starting with the 1D version of the model.
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2.8 Surface rounding in the 1D unloading sandbox

The 1D version of the unloading sandbox shows the same type of differences between uncor-

related and avalanche-type correlated MC runs as the 2D version. We determined numer-

ically the difference between the interface width for avalanche-correlated and uncorrelated

MC runs, and found that it diverges as a power law ∆W 2 ∼ y1/2, with an exponent which

is again (like in 2D) half the size of that for W 2 ∼ y itself. According to the corrections to

scaling formalism (2.24), the scaling dimension of Osc must therefore be equal to xsc = z,

just as in 2D.

The underlying interface dynamics becomes a zero-dimensional growth model, i.e., a

simple random walk in the h direction with a nonzero drift velocity to account for the net

tilt of the surface. The exponents of the various avalanche distribution functions must obey

the same type of relations as in Sec. 2.5:

τl =
σ − α

z
, τδ =

σ − z

α
, τm =

σ

α + z
, (2.26)

and

σ = z + 2α. (2.27)

Without loss of generality we can set α = 1 (measure all lengths in terms of δ). These iden-

tities are satisfied exactly, and the exponents are the same for uncorrelated and avalanche-

correlated runs. From the interface dynamics perspective, a single directed random walker,

the diffusion equation character of the dynamics implies that z = 2α = 2. The values

of all the other exponents follow from this, and are consistent with their values from the

avalanche perspective. There, we are dealing with the statistics of merging random walkers.

The number of walkers at a given “time” y is equal to the number of avalanches of a length

l equal or larger than y in the ensemble of MC runs. The density of the walkers decays as

ρ(y) ∼ y−1/2 [58], such that the distribution of avalanche lengths obeys the form

Pl(l) =
[
− ∂

∂y
ρ(y)

]

y=l

∼ l−3/2, (2.28)

and therefore that τl = 3/2. The depth of the avalanche follows from the maximum sepa-

ration between two subsequent walkers, and scales as δ ∼ l1/2, i.e., α/z = 1/2. The mass

scales as m ∼ lδ ∼ l3/2, i.e., (α + z)/z = 3/2 and τm = 4/3.



67

This can be compared directly with the exponents of other 1D sandpile models, e.g.,

with results by Paczuski and Boettcher [92] on the so-called Oslo sandpile model, where

τ ≡ τm ≈ 1.55 and D ≡ (α + z)/z ≈ 2.23.

Let us turn our attention now to the central issue, the difference between uncorrelated

versus avalanche-correlated MC runs. Adding a term like uOsc to the diffusion equation of

motion creates a correction to the drift velocity of the random walk. This suggests we can

identify the geometric meaning of Osc directly by studying the deviations of the slope near

the driving edge of the surface from its asymptotic value.

The average surface slope does not show any deviations (near the driving edge) from sc/2

when we run the dynamics as a conventional random walk, which amounts to “completely

refreshing” the surface after each MC run (uncorrelated MC runs). The avalanche-correlated

runs do show a rounding of the surface near the driving edge,

s(y) ' Ay−κ +
1
2
sc. (2.29)

The numerical results for the exponent yield κ = 0.98± 0.03. This confirms our corrections

to scaling picture, because it predicts that xsc = z from the interface width since κ = xsc/z

and z = 2 for random walks.

This rounding originates from the distribution of termination points of the avalanches.

A new random walk starts below the previous one and propagates until it meets the previous

trajectory and terminates. The avalanche is the space between the trajectory of that new

random walk and the already existent surface. The amount of rounding of the slope near

the driving edge is proportional to the distribution ρ(y) of merging points on the surface.

These merging points represent the scars left from previous avalanches. Each random walker

by itself does not contribute to the rounding, i.e., on average each has a constant slope

sc/2. However every new walk lies below the previous surface, such that down stream from

every avalanche end point the surface is systematically lower than beyond it. This upward

bias across the avalanche merging points (by an amount, e.g., sc/2, on an average, in the

discrete h version of our model) gives rise to the surface rounding and yields that the latter

is proportional to ρ(y).

The entire process and the set of subsequent stable sand surfaces (Fig. 2.11) is therefore
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Figure 2.11: Traces of stable sand surface over 256 avalanches for 1D sandbox model with

Ly = 256. The system is driven from the left at y = 0.

equivalent to a system of merging random walkers obeying the rule A + A → A. That

type of dynamics has received extensive attention recently and its various scaling properties

are known exactly [58]. There is little doubt that our 1D unloading sandbox is exactly

soluble, using absorbing-wall-type random-walk mathematics. However, we will refrain

from pursuing this path here.

The critical dimension of Osc ∼ ρ(y) can be estimated (for intuition building purposes)

as follows. After adding a term uOsc to the KPZ equation, we should also write down an

equation of motion for Osc itself, to close the equations. The latter is not trivial, because

the scars on the surface build up slowly in time, such that the equation of motion for Osc is
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highly nonlocal. On the other hand, the linear nature of the diffusion equation allows one

to be somewhat frivolous with the order in which averages are taken, (without losing the

essential physics, nor even the correct critical exponents).

Let ρt̃(y) be the end-point distribution after t̃ avalanches (MC time steps). During the

last MC time step, one avalanche runs through the system. It refreshes the entire surface

before its termination point y = lt̃, such that ρt̃ at site y does not change if the avalanche

terminates before y; ρt̃(y) = 1 if it terminates at y; and ρt̃(y) = 0 if it extends beyond y:

∂ρt̃(y)
∂t̃

= Pl(y)− ρt̃(y)
∫ ∞

y
Pl(l)dl (2.30)

with Pl(l) the probability that the avalanche terminates at distance l from the driving edge.

The stationary state end-point profile therefore takes the form

ρ(y) =
Pl(y)∫ ∞

y
Pl(l)dl

, (2.31)

and Pl(l) ∼ l−τl yields

ρ(y) =
1

τl − 1
y−1. (2.32)

In other words, the surface curvature scales as ∆s ∼ y−xsc/z with xsc = z, in agreement

with the above results. Interestingly, this result is independent of the actual value of the

scaling exponent τl, provided that τl > 1, which has to be true for Pl to be normalizable.

In conclusion, in 1D we identified the crossover scaling operator with the density of

avalanche end points. These represent indeed the scars on the surface, the memory of

previous avalanches.

2.9 Avalanche rounding near the driving edge in 2D

As in the 1D model, the surface slope is modified by the iterated avalanche process. However,

unlike in 1D, the average slope near the edge is not constant already in conventional interface

dynamics (where the entire surface is being refreshed during each MC run). The surface

slope is related to the growth rate of the underlying interface, and the rounding of the slope

near the driving edge represents the transient growth rate of the KPZ interface from the



70

0 0.1 0.2
1/y

0.6

0.7

0.8
κ

f

0 0.1 0.2
1/y

1

1.1

κ

Figure 2.12: Scaling exponent for boundary correction to the local slope of fresh 2D

sandbox surface (or, in the interface language, transient growth rate from a flat interface),

sf (y) − sf (∞) ∼ y−κf , and its correction due to the iterated avalanche process, ∆s =

s(y)− sf (y) ∼ y−κ.

initial configuration, e.g., a flat one:

sf (y) ' v0 + cy−κf (2.33)

with y playing the role of time and the subscript, f , denoting that the entire surface is

refreshed. By direct numerical simulation of uncorrelated interface dynamics we find κf ≈
0.7 (the left panel of Fig. 2.12). This is consistent with conventional KPZ scaling and power

counting

s ∼ h/y ∼ yα/z−1 ∼ y−2/3, (2.34)

suggesting κf = 2/3.

We evaluate the surface slope profile s(y) in avalanche-correlated dynamics MC runs, in

terms of the difference with respect to the uncorrelated case,

∆s(y) = s(y)− sf (y) ∼ yκ. (2.35)

The FSS analysis for the exponent κ (the right panel of Fig. 2.12) yields κ = 1.05 ± 0.07.
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Figure 2.13: Two possible cases at a boundary of an avalanche cluster (the shaded area):

(a) avalanche expands; (b) avalanche shrinks. The local slopes along the arrow marks is

reduced in (a) while increased in (b).

This is in agreement with xsc = z and κ = xsc/z implied by the corrections to scaling

formalism (2.24).

Inside the bulk of an avalanche the interface is fully refreshed, and scales as in uncor-

related KPZ dynamics. At the avalanche boundaries, the slope of the surface is biased

upwards, because of the merging with previous MC runs (which are on average shifted up-

wards by an amount sc/2Lx each time an avalanche is triggered). This means that the ∆s

is proportional to the density of scars in the surface. In 1D, the scars are pointlike objects,

the end points of the avalanches; but in 2D the avalanche boundaries are line objects. This

nonscalar aspect makes that most line-segment contributions, when integrated along the

boundaries of an avalanche, cancel out against each other.

To be more precise, s(y) represents only the component of the slope in the y direction,

and the magnitude of those jumps depends on the local angle θ the boundary makes with

the y axis. This is an odd function, ∆(θ) = −∆(−θ), as illustrated in Fig. 2.13. The

slope change is negative when the avalanche opens up and positive when it narrows down.

The latter also implies that ∆(θ) has opposite sign for the left and right boundary of each

avalanche. Notice that, while in the lattice model θ takes only two discrete values, it

renormalizes to a continuous variable at larger length scales.
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Let us estimate the change in surface slope due to these scars in the same spirit as

we did successfully in 1D. Consider one specific surface, and let st̃(y) be the surface slope

in a slice of the surface at distance y from the driving edge, averaged over all x, after t̃

avalanches (MC time t̃). The last avalanche changes this as follows. Let wt̃(y
′) be the width

of this avalanche, which terminates at y = lt̃, in slice y′. The inside area of the avalanche

is completely refreshed and therefore has the same average slope sf (y) as in ordinary KPZ

dynamics (totally refreshed subsequent world sheets). This leads to the following equation

of motion:
∂st̃(y)

∂t̃
= [∆(θL)−∆(θR)] + wt̃(y)[sf (y)− st̃(y)]. (2.36)

The first term on the right hand side represents the creation of the two new avalanche edges,

and the second term represents the refreshed surface inside the new avalanche. Note that

∂st̃(y)/∂t̃ = 0 when this latest avalanche does not reach slice y, and that this is automatically

taken care of because in that case θL = θR = 0 and ∆(0) = 0, while wt̃(y) = 0 for y > lt̃.

In the stationary state, after averaging over all possible avalanches, Eq. (2.36) leads to

wt̃(y) [sf (y)− st̃(y)] = ∆(θL)−∆(θR). (2.37)

Next, we perform an heuristic coarse-graining renormalization-type transformation. At

large length scales, the average angle θ remains small, such that the right hand side can be

approximated as

∆(θL)−∆(θR) ' a θL − θR ' a
∂wt̃(y)

∂y
. (2.38)

Finally, we presume that in the stationary state it is not too bad to treat the KPZ height

fluctuations deep inside the bulk of an avalanche and those near its edge as decoupled (at

least in lowest order) such that

∆s(y) = sf (y)− st̃(y) = a
∂

∂y
ln

[
wt̃(y)

]
. (2.39)

This yields ∆s(y) ∼ y−1, exactly the power-law decay we are looking for, and consistent

with all the above numerical results.

The only requirement for the latter is that wt̃(y) ∼ y−ξ decays as a power law. Again,

like in Eq. (2.32) for 1D, the value of the critical exponent ξ does not matter. wt̃(y) is equal
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to the average avalanche width in slice y averaged over all avalanches. It is reasonable to

expect, and we confirmed numerically, that this quantity scales with the same exponent as

the average width of all avalanches longer than y, i.e., as
∫ ∞

y
w(l)P (l)dl ∼ y1/z−τl+1 (2.40)

which yields ξ ' 1/3.

We are now ready to represent the crossover scaling operator Osc(x) in terms of the scars

on the surface. Consider time slice y. Osc(x) = 0 when no scar line runs through site x,

and otherwise is proportional to the angle the scar line makes with respect to the y axis.

However, the sign also flips depending on whether this represents a left or right boundary

of the original avalanche. The latter can be denoted by an arrow along the avalanche scar

line. Alternatively, we can associate an age field g(x, y) to the entire surface, representing

the age of the surface segments (how many MC time steps ago site x was updated),

Osc ∼ êy ·∇g

|∇g| (2.41)

with êy a unit vector in the y direction. The denominator arises because the magnitude of

the age jump across the scar line |∇g| does not play a role.

2.10 Summary

In this chapter, we studied a directed avalanche model inspired by the unloading of a

sandbox by means of a slowly lowering wall, and the wish to setup an avalanche dynamic

rule belonging to the same universality class as KPZ-type interface growth. The 2D sand

surface represents the world sheet of the 1+1D growing interface.

The scaling exponents of the avalanche distributions are directly related to the dynami-

cal and stationary state roughness exponents z and α of KPZ growth in 1+1D [Eq. (2.11)].

However, we encounter one crucial difference. From the avalanche perspective, the con-

ventional uncorrelated MC runs correspond to completely refreshing the surface, i.e., an

ensemble average over all possible initial conditions, without ever running an avalanche.

From the KPZ perspective, the avalanche dynamics represents an unusual MC ensemble

averaging procedure where subsequent interface world sheets only differ inside the single
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avalanche. This avalanche-correlated-type averaging enhances the interface roughness at

time scales y < Lz
x, due to the scars of previous avalanches. It required a careful study,

combining numerical and analytical tools, presented in the second half of this chapter, to

establish that these scars give rise only to larger than usual corrections to scaling and not

to fundamentally different values of the global roughness scaling exponents z and α.

The effect of the scars can be represented by introducing an additional age field g(x, y)

to the height variables h(x, y), that keeps track of how many MC runs ago site (x, y)

participated in an avalanche. This age-field couples into the KPZ equation (2.5) as an

additional term of the form uOsc. The operator Osc is proportional to the angle a scar

makes with respect to the time-axis, and can be expressed in terms of the age field as

shown in Eq. (2.41). We establish that the coupling of this age field to the KPZ equation

is irrelevant in the sense of renormalization theory, both numerically and by writing down

approximate equations of motion for uOsc. The scaling field u renormalizes with exponent

ysc = −α and Osc scales with critical dimension xsc = −z.

We believe that the results of our work presented here can be generalized to most “Marko-

vian” avalanche dynamic systems with local row-by-row-type toppling rules, and that this

is a promising route to improve our understanding of the scaling properties of avalanche

dynamics in general.



75

Chapter 3

DEEPENING TRANSITION OF AVALANCHES

In this chapter, we will use the discrete-height of the sandbox models introduced in the

previous chapter with a control parameter p representing the cohesiveness to investigate the

transition between the avalanches in cohesive granular materials and noncohesive granular

materials. From the previous chapters, we know the avalanche dynamics of the model

can be mapped to interface growth model. For the DHSB model, there is a continuous

phase transition which separates the rough phase and the flat phase of the underlying

interface growth dynamics. In the avalanche system, this corresponds to a transition from

deep avalanches to shallow avalanches. We will verify that the scaling exponents of the

avalanches follow those of the interface growth in both phases and at the transition point.

However, we will also show that the mass hyperscaling relation is broken at the transition

point. This is likely due to the fractal property in a hierarchy of critical directed percolation

processes taking place at the transition point.

3.1 Introduction

Granular avalanches have received much attention since the sandpile models were used as

the paradigm of the so-called self-organized criticality by Bak et al. [5]. However, the

observations of critical distribution of avalanches in real physical systems are still rare apart

from the rice pile experiments by Frette et al. [42]. It was suggested by Christensen et al.

[25] that the anisotropy in the rice grains allows more packing configurations in a stable

granular pile and could be what leads to the successful observation of criticality. Some

of the recent attentions have been drawn to the avalanches in cohesive granular materials

with the premise that cohesion will also allow the sand more packing configurations and

thus increase the likelihood of observing critical scaling behavior. While the goal of finding

criticality in cohesive sandpiles remains to be fulfilled even after the experimental work by



76

Quintanilla et al. [99], the effect of cohesion in granular avalanche represents an interesting

direction for a theoretical study.

In this chapter, we’ll use the discrete height version of the sandbox (DHSB) model

introduced in [23] to understand the effects of cohesion in directed avalanche systems. In

the following section, we’ll discuss how we can model the cohesiveness in avalanche systems.

In Sec. 3.3, we’ll review the DHSB model with a cohesion parameter. In Sec. 3.4, we

describe the step-flow random-deposition (SFRD) interface growth model underlying the

DHSB model and the directed percolation (DP) roughening transition of the SFRD model.

In Sec. 3.5, we focus on the two deterministic limits of the model and present the exact

solution at the upper limit. In Sec. 3.6, we present the numerical results for the avalanches

in the flat phase of the interface model. In Sec. 3.7, we investigate the scaling behavior

at the transition point where the interface roughness increases logarithmically in time. We

show the avalanche-scarred sand surface, while being rougher than nonscarred one, retains

the same scaling exponent of the roughness in the thermodynamic limit. However, we’ll

also show that at the transition point, the violation of mass hyperscaling relation spoils the

two-independent-exponent picture established in [22]. We’ll summarize in Sec. 3.8.

3.2 Tunable parameter for cohesion

One interesting character of cohesion in sand is that it possesses certain hysteresis behavior.

Consider building a sand castle on a beach. It’s common sense that we’ll need to add water

to the sand before we can shape it into a standing castle. However, the sand castle can

somehow maintain its shape even after it dries out afterward [59]. The moisture in sand

increases the cohesion between the sand particles [89] and allows one to manipulate the

sand into a stable shape that, while not as attainable, is more or less an equally valid stable

shape for the dry sand.

In accounting for this standing-sand-castle effect, we’ll use the same stability condition

for all cohesiveness of the sandbox. While, in reality, the space of possible stable config-

urations for wet and dry sand might not be identical, in this article, we shall ignore this

distinction to avoid considering a more complicated rule set.
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Figure 3.1: Lattice structure of the two dimensional discrete-height sandbox model.

On the other hand, the way an unstable sand surface topples surely depends on the

cohesiveness. In the DHSB model, there are only two possible final stable states for any

toppling site. We’ll call them the minimal stable state and the maximal stable state. These

two states are similar to the angle of repose and maximal stable angle in a real sandpile.

However, those two states in sandbox model are microscopic states while the “angles” of a

real sandpile are macroscopic. We’ll use the parameter p, a real number between 0 and 1,

to represent the strength of cohesion. In the model, p is the probability for a toppling site

of the sandpile to settle into the maximal stable state instead of the minimal one. For wet

sand the p is large and for dry sand the p is small.

3.3 Discrete height sandbox model

With the discussion of the previous section in mind, let’s review the dynamic rules of the

discrete height sandbox model (DHSB). The surface of the sandbox is represented by an

integer height variable h defined on a two-dimensional (2D) square lattice which is tilted

at 45◦ as illustrated in Fig. 3.1. This is equivalent to considering only the lattice points

whose integer x and y coordinates satisfy the condition that x + y is an even number. The

lowering wall that drives the system by creating unstable sites is located at the y = 0 row
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and the activities in the system propagates only in the positive y direction. In our numerical

simulations, the system is periodic in the x direction, which is parallel to the driving wall.

The sizes of the system in the x and y directions are denoted by the numbers of sites Lx in

each row and the number of rows Ly respectively.

As in most sandpile models, the dynamics of the sandbox model is defined by a stability

condition, a toppling rule, and a driving method which we describe as follows. The stability

condition of the DHSB is given by

h(x, y) ≤ min [h(x− 1, y − 1), h(x + 1, y − 1)] + sc, (3.1)

with sc = 1 which represents the local maximal stable slope. The unstable sites in the

system topple with the rule

h(x, y) → min [h(x− 1, y − 1), h(x + 1, y − 1)] + η, (3.2)

where η = 0 with probability 1 − p and η = 1 with probability p. This is the only place

in the dynamics of the DHSB that the cohesion parameter p comes into play. The lowing

wall which drives the system is implemented in the model by randomly picking one of the

highest sites (xi, 0) on the y = 0 row and reducing its height by 1

h(xi, 0) → h(xi, 0)− 1, (3.3)

where i is the Monte Carlo time which also serves as an index of the avalanches.

A typical configuration of the DHSB before and after an avalanche is shown in Fig. 3.2.

Since the toppling of a site on a given row y only affects the stability of the two sites imme-

diately above it at the y + 1 row, we choose to update the system in a row-by-row fashion.

For each avalanche, the entire system is stabilized by such a single sweep of topplings from

y = 0 to y = Ly.

3.4 Underlying interface dynamics

The underlying interface dynamics of the sandbox models is given by the step-flow random-

deposition (SFRD) models with a two-step growth rule [23, 22] as illustrated in Fig. 3.3.

Models similar to this generally belong to the Kardar-Parisi-Zhang (KPZ) universality class
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Figure 3.2: A typical configuration of the discrete-height sandbox model before (left) and

after (right) a system spanning avalanche trigger at the boundary site marked by the white

dot; The system size Lx × Ly is 32× 64.

with the critical exponents α = 1/2, β = 1/3, and z = α/β = 3/2. Thus, from the mapping

introduced in [23], the avalanche exponents are given by

τl =
σ − 1− α

z
= 2, (3.4)

τw = σ − z − α =
5
2
, (3.5)

and

τδ =
σ − 1− z

α
= 4 (3.6)

for the distribution functions of avalanche length l, width w, and depth δ. The σ in these

expressions was eliminated with the mass hyperscaling relation

σ = 2 + z + 2α. (3.7)

obtained from the compactness of the avalanche clusters, i.e., assuming m ∼ lwδ.

However, the discrete height version of the SFRD model undergoes a DP roughening

transition at p = pc ≈ 0.294515 similar to those studied by Kertész and Wolf [65] also Alon

et al. [1]. The KPZ scaling behavior only applies when the value of the control parameter p
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Figure 3.3: Two-step growth of the discrete-height step-flow random-deposition interface

growth model; (a) Steps flow by one unit to the right (left) when its size ∆h is negative

(positive); (b) Each site increases by one unit with a probability p.
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is greater than the critical value pc. Below this transition point the interface is in a trivial

flat state, where, for a stationary interface (interface time y → ∞), the density of sites at

the bottom h = h0 layer is finite. The interface is thus pinned at this level and its growth

rate becomes zero.

At the transition point p = pc, the roughness of the interface

W 2 ≡ (h− h̄)2 (3.8)

diverges only logarithmically in time

W 2 ∼ (ln t)γ , (3.9)

with the exponent γ ≈ 1 similar to that of the Kertész and Wolf’s model as well as the

restricted version of the models by Alon et al..

3.5 Deterministic limits

At the two limits, p = 1 and p = 0, the toppling process of the avalanches becomes de-

terministic and the sand surface goes down layer by layer. The only randomness of the

system comes from the driving method (3.3), where we randomly choose one of the highest

sites at the y = 0 row to trigger an avalanche. The typical avalanche scar configurations at

these two limits are shown in Fig. 3.4. These are the edges of avalanche clusters left on the

surface, some of which are partially wiped out by newer avalanches.

3.5.1 Domain walls at p = 0

The p = 0 limit runs into the complication that in the bulk of the system (y > 0) the sand

surface goes down by two units at a time. Since ∆h ≡ h(x, y)−min[h(x− 1, y − 1), h(x +

1, y − 1)] = 1 is stable according to the stability condition (3.1) and the sites on the y = 0

row always goes down by 1 each time according to the driving method (3.3), the sites on

the y = 1 row will only topple when their highs are 2 higher than the triggering sites and

they alway go down by 2 to the same height of the triggering site according to the toppling

rule (3.2). All the sites at higher rows will be locked into the same even-oddness as the
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a.

b.

Figure 3.4: Scar (edge lines of avalanche clusters) configurations of DHSB avalanches at

the two deterministic limits; (a) p = 0; (b) p = 1.
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sites triggering their toppling. Therefore, after all sites have participated in at least one

avalanche, their even-oddness will be fixed for all subsequent topplings. This means the

even-oddness of a site is preserved by the toppling process. Therefore, the lines separating

the even and odd sites thus form impenetrable domain walls for the avalanches (see Fig. 3.5).

This hinders the applicability of the same analysis for the p = 1 situation we will present

below.

3.5.2 Exact solution at p = 1

The p = 1 limit has a nice solution. Since the sites in the bulk topple from ∆h = 2 to

∆h = 1, the sand surface indeed goes down one layer at a time without the complication

discussed previously. An exact solution can be obtained by considering the avalanches

taking place in such one single layer. For a brand-new layer, the two boundaries of the

first avalanche opens up linearly until it spans the system in the x direction and leave two

scar lines on the surface. The two boundaries of the second avalanche expand until they

meets the scar lines created by the first avalanche. Then, they turn and follow those scar

lines until they meet with each other and terminate the avalanche. Subsequent avalanches

follow the same scenario. The maximum distance an avalanche cluster can expand from its

triggering point to each side in the x direction is exactly half the distance from the nearest

triggering point of the previous avalanches in the same layer on that side. As the triggering

points are chosen at a noncorrelated way, the maximum width w of an avalanche should

follow Poisson’s distribution

Pw(w) =
µwe−µ

w!
(3.10)

if the number of previous avalanches in the same layer is fixed so that µ is the average

distance between the triggering points of the previous avalanches in the same layer. However,

the avalanche under consideration could be any one of the avalanches happening in the same

layer. Thus, we need to average over the number of avalanches n happening before this one

in the same layer. For system of transverse size Lx, n = Lx/µ. The integral can be carried

out explicitly and gives ∫ ∞

0

µwe−µ

w!
d

1
µ

=
(w − 2)!

w!
∼ w−2, (3.11)
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Figure 3.5: The domains of odd (shaded region) and even (light region) sites on a DHSB

surface at p = 0, separating them are domain walls that no avalanche will penetrate at this

deterministic limit.
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which results in

τl = τw = 2. (3.12)

The same results can also be derived from Eq. (3.4) and (3.5) by assuming z = 1 and

α = 0. Since the avalanches are compact the hyperscaling relation (3.7) and the derivations

in [23] hold.

3.6 Shallow-avalanche phase

Below the transition point, the underlying interface model is in a flat phase where the

bottom layer percolates with finite density. All the information of the initial configuration

of the interface (the y = 0 row next to the wall) is wiped out at a time scale proportional

to the sizes of the islands above bottom layer in the initial state. (Without deposition,

the size of these islands decrease linearly in time.) While the underlying interface model

is in a trivial phase, much like the uncorrelated stationary state of the system in Dhar

and Ramaswamy’s directed sandpile model [32], the avalanche distributions of the system

may still exhibit power-law scaling. The numerical values of the scaling exponents shown

in Fig. 3.6 confirm the power-law scaling of the distributions and they are similar to those

values found at the p = 1 fixed point following z = 1 and α = 0. While an exact solution is

not available in this phase, we can understand that the scaling exponent z = 1 comes from

the perspective that the DP clusters triggered from a single seed in the percolating phase

open up linearly and also that roughness exponent α = 0 comes from that the interface here

is in a flat phase. However, a difference is that while p < pc represents an entire phase of

shallow avalanches which should be controlled by an attractive fixed point, the p = 1 fixed

point is unstable in the sense that the scaling behavior falls back to the KPZ universality

class for any small deficiency in the cohesiveness p from the value 1.

3.7 DP roughening transition

At the transition point p = pc, the interface roughness diverges logarithmically thus both

the α and β exponent are zero. Nonetheless, the dynamic exponent z has a nontrivial

value zDP ≈ 1.582 coming from the DP nature of the bottom-layer dynamics. However, at
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Figure 3.6: Finite-size scaling (FSS) estimates of the scaling exponents versus inverse

width (1/w) of avalanche clusters for the DHSB avalanches in the shallow-avalanche phase

(measured at p = 0.1). They are consistent with α = 0 and z = 1.
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the transition point, the avalanche clusters loss their compact shapes (see Fig. 3.7) and we

should not expect the derivation in [23] for the avalanche exponents nor the calculation in

[22] for the correction to scaling to remain valid. In this section we will show the break

down of mass hyperscaling relation (3.7) and how the avalanches affect the roughness of the

sand surface.

3.7.1 Breakdown of mass hyperscaling

At the transition point, the bottom layer of an avalanche cluster follows the critical DP

dynamics therefore we should expect from the fractal DP cluster shape, the density of sites

at the lowest h = h0 level goes to zero in the thermodynamic limit for large avalanches.

However, the overall shape of an avalanche consists of, in addition, sites at h0 + 1, h0 + 2,

. . . levels. The higher-level sites that participate in the avalanche fill into the holes and

voids next to the bottom layer cluster and more or less bring the avalanche cluster back

to a compact shape. We can verify this compactness of the avalanche cluster by a direct

measurement of the ratio a/(lw), with a being the area of (or, the number of sites participate

in) an avalanche. The result is shown as the solid line in Fig. 3.8. The approach to a finite

value on the vertical axis shows the compactness of the avalanche clusters by the existence

of a finite area density ≈ 0.2 in the thermodynamic limit. The FSS estimates are plotted

against 1/ ln y instead of 1/y since the roughness of the surface diverges only logarithmically

in y, which we will elaborate later.

Contrary to a finite area density, as also shown in Fig. 3.8, the mass density m/(lwδ)

(the dashed line) goes to zero in the thermodynamic limit. The nonexistence of a finite

mass density breaks the scaling

m ∼ lwd, (3.13)

which was assumed in [23] for the derivation of the mass hyperscaling relation (3.7). The

plot of the combined exponent σ− z− 2α in Fig. 3.9 shows the violation of Eq. (3.7) where

the FSS estimates approaches ≈ 1.72 which is much lower than the expected value 2.

Also shown in Fig. 3.9 are the plots for the α, z, and σ exponents. They are consistent

with z = zDP and more or less with α = 0. This confirms that the scaling behavior of the
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Figure 3.7: A typical large avalanche cluster for DHSB at the DP transition point; The

size of the box is Lx × Ly = 455× 10000.
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Figure 3.8: The FSS plot of the area density a/(lw) (solid line) and the mass density

m/(lwδ) (dashed line) versus inverse length (1/l) for the avalanche clusters at the DP

transition point. While the area density converges to a finite value at the thermodynamic

limit, the mass density converges to 0.
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Figure 3.9: FSS estimates of the scaling exponents derived from the avalanche exponents

τl, τw, τδ for the discrete height sandbox model versus the inverse width (1/w) at the DP

transition point. The z exponent is consistent with dynamic exponent of DP universality

class zDP ' 1.582. The combination σ−z−2α < 2 indicates a violation of mass hyperscaling

relation (3.7).
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Figure 3.10: The roughness of a stationary DHSB surface(dotted line) compared with the

roughness of the SFRD model (solid line) versus the double logarithm of time t at the DP

transition point. The iterated avalanche process makes the surface rougher. The dashed

line shows the increase of the roughness by the iterated avalanche process.

avalanches follows those of the SFRD interface. The slow convergence of α is to be expected

from the logarithmic divergence of the interface roughness.

3.7.2 Interface roughness

The remaining question is how the scaling behavior of the roughness will be changed by

the iterated avalanche process. We approach this by looking at the change of the roughness

itself and compare the scaling of this change to the scaling of the original interface roughness

as what was done in [22]. The results are shown in Fig. 3.10. The change in the roughness

∆W 2 scale as (ln t)γ with γ ≈ 0.4 as shown in Fig. 3.11 which is less than γ ≈ 1 for the

SFRD model. Therefore, in the thermodynamics limit, the DHSB should retain the same

γ exponent as the SFRD model.
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Figure 3.11: FSS of the γ exponents of the logarithmic scaling of SFRD roughness (solid

line) and ∆W 2 ≡ W 2
DHSB −W 2

SFRD (dashed line), assuming the scaling form (ln t)γ , versus

the inverse of the logarithm of time. The change in roughness ∆W 2 scales with a smaller

exponent than the scaling exponent of W 2.
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3.8 Summary

In this chapter, we introduced the DHSB as a model for the avalanches in granular materi-

als with variable cohesiveness. This model exhibits a deepening transition from a shallow-

avalanche phase where avalanches only involve a couple of surface layers of the granular

material, into a deep avalanche phase where the depths of avalanches increase with power

laws of their lengths or widths. In the deep avalanche phase, the scaling behavior of the

avalanches belongs to the KPZ universality class: The avalanche clusters scale anisotropi-

cally with l ∼ w3/2 and depth increase as δ ∼ w1/2. In the flat phase, the avalanche clusters

scale isotropically l ∼ w with finite depths.

In both phases, the mass hyperscaling relation (3.7) based on the compactness (3.13)

of the avalanche holds. On the other hand, at the transition point, the hierarchical DP

structure studied by Tauber et al. [110] for each level of the toppling sites break this scaling

in a subtle way. While the mass density m/(lwδ) of the avalanche clusters goes to zero

in the thermodynamic limit, the area density a/(lw) remains finite. However, the exact

scaling behavior of the systems at this DP roughening transition point remains a mystery

even without the iterated avalanche in the DHSB model [2, 75, 44].

While we are not aware of any experimental study on how the avalanche behavior of a

system will vary with a gradual change in the cohesiveness of the grains, the cohesiveness

in granular system is known to depend on moisture [89] and grain sizes [111, 99]. We

thus expect experimental studies in this direction not to be meet with too much difficulty.

However, the DHSB model represents a system with layered structure where the heights

are discrete and the DP nature of the deepening transition relies heavily on a well defined

bottom layer or minimal stable configuration of the systems. It thus wouldn’t be a surprise

if the exact DP scaling were not to be observed in the avalanches of most regular sandpiles.

Nonetheless, the breakdown of the mass hyperscaling relation (3.7) comes from the

fractal aspect of the hierarchical DP clusters. It would serve as a hallmark to the existence

of such a transition if it’s to be observed experimentally.
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[48] Peter Grassberger, Hugues Chaté, and Guillaume Rousseau. Spreading in media with

long-time memory. Physical Review E, 55:2488–2495, 1997.

[49] Peter Grassberger, Friedrich Krause, and Tassilo von der Twer. A new type of kinetic

critical phenomenon. Journal of Physics A: Mathematical and General, 17(3):L105–

L109, 1984.

[50] D. G. Green, A. M. Gill, and I. R. Noble. Fire shapes and the adequacy of fire-spread

models. Ecological Modelling, 20(1):33–45, 1983.

[51] Beno Gutenberg and C. F. Richter. Seismicity of the earth. Geological Society of

America, Special Papers, (34):1–131, 1941.



99

[52] Timothy Halpin-Healy and Yi-Cheng Zhang. Kinetic roughening phenomena, stochas-

tic growth, directed polymers and all that. aspects of multidisciplinary statistical me-

chanics. Physics Reports, 254:215–414, 1995.

[53] Jeff Hasty and Kurt Wiesenfeld. Renormalization group for directed sandpile models.

Physical Review Letters, 81:1722–1725, 1998.

[54] G. A. Held, D. H. Solina, H. Solina, D. T. Keane, W. J. Haag, P. M. Horn, and

G. Grinstein. Experimental study of critical-mass fluctuations in an evolving sandpile.

Physical Review Letters, 65:1120–1123, 1990.

[55] Chu heng Liu, H. M. Jaeger, and Sidney R. Nagel. Finite-size effects in a sandpile.

Physical Review A, 43:7091–7092, 1991.

[56] H. Hinrichsen and H.M. Koduvely. Numerical study of local and global persistence in

directed percolation. European Physical Journal B, 5:257–264, 1998.
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[72] Kent Bækgaard Lauritsen, Per Fröjdh, and Martin Howard. Surface critical behavior

in systems with absorbing states. Physical Review Letters, 81:2104–2107, 1998.

[73] Kent Bækgaard Lauritsen, Kim Sneppen, Maria Markošová, and Mogens H. Jensen.
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[76] S. Lübeck, B. Tadić, and K. D. Usadel. Nonequilibrium phase transition and self-

organized criticality in a sandpile model with stochastic dynamics. Physical Review

E, 53:2182–2189, 1996.

[77] Thomas Lux and Michele Marchesi. Scaling and criticality in a stochastic multi-agent

model of a financial market. Nature, 397:498–500, 1999.

[78] S. Majumdar and D. Dhar. Equivalence between the abelian sandpile model and the

q to 0 limit of the potts model. Physica A, 185:129–145, 1992.

[79] Benoit Mandelbrot. How long is the coast of britain? statistical self-similarity and

fractional dimension. Science, 156(3775):636–638, 1967.

[80] Benoit B. Mandelbrot. The fractal geometry of nature. W. H. Freeman, San Francisco,

1983.

[81] S S Manna. Two-state model of self-organized criticality. Journal of Physics A:

Mathematical and General, 24(7):L363–L369, 1991.



102

[82] Mitsugu Matsushita and Hiroshi Fujikawa. Diffusion-limited growth in bacterial colony

formation. Physica A, 168:498–506, 1990.

[83] S. Matsuura and S. Miyazima. Self-affine fractal growth front of aspergillus-oryzae.

Physica A, 191:30–34, 1992.

[84] J. Maunuksela, M. Myllys, O.-P. Kähkönen, J. Timonen, N. Provatas, M. J. Alava,

and T. Ala-Nissila. Kinetic roughening in slow combustion of paper. Physical Review

Letters, 79:1515–1518, 1997.

[85] P. Meakin and R. Jullien. Restructuring effects in the rain model for random deposi-

tion. Journal de Physique, 48:1651–1662, 1987.

[86] Paul Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball. Ballistic deposition on

surfaces. Physical Review A, 34:5091–5103, 1986.

[87] Ernesto Medina, Terence Hwa, Mehran Kardar, and Yi-Cheng Zhang. Burgers equa-

tion with correlated noise: Renormalization-group analysis and applications to di-

rected polymers and interface growth. Physical Review A, 39:3053–3075, 1989.

[88] M. Myllys, J. Maunuksela, M. Alava, T. Ala-Nissila, J. Merikoski, and J. Timonen.

Kinetic roughening in slow combustion of paper. Physical Review E, page 036101,

2001.

[89] Steven T. Nase, Watson L. Vargas, Adetola A. Abatan, and J. J. McCarthy. Discrete

characterization tools for cohesive granular material. Powder Technology, 116:214–

223, 2001.

[90] John Neergaard and Marcel den Nijs. Crossover scaling functions in one dimensional

dynamic growth models. Physical Review Letters, 74:730–733, 1995.

[91] Maya Paczuski and Kevin E. Bassler. Theoretical results for sandpile models of soc

with multiple topplings. Physical Review E, 62:5347–5352, 2000.



103

[92] Maya Paczuski and Stefan Boettcher. Universality in sandpiles, interface depinning,

and earthquake models. Physical Review Letters, 77:111–114, 1996.

[93] Giorgio Parisi and Zhang Yi-Cheng. Field theories and growth models. Journal of

Statistical Physics, 41:1–36, 1985.

[94] S. Park and B. Kahng. Nonequilibrium roughening transition in an interface growth

model with two species of particles. Physical Review E, 60:6160–6163, 1999.

[95] Romualdo Pastor-Satorras and Alessandro Vespignani. Critical behavior and conser-

vation in directed sandpiles. Physical Review E, 62:6195–6205, 2000.

[96] Romualdo Pastor-Satorras and Alessandro Vespignani. Universality classes in directed

sandpile models. Journal of Physics A: Mathematical and General, 33(3):L33–L39,

2000.

[97] L. Pietronero, A. Vespignani, and S. Zapperi. Renormalization scheme for self-

organized criticality in sandpile models. Physical Review Letters, 72:1690–1693, 1994.

[98] V. B. Priezzhev, D. V. Ktitarev, and E. V. Ivashkevich. Formation of avalanches and

critical exponents in an abelian sandpile model. Physical Review Letters, 76:2093–

2096, 1996.

[99] M. A. S. Quintanilla, J. M. Valverde, A. Castellanos, and R. E. Viturro. Looking for

self-organized critical behavior in avalanches of slightly cohesive powders. Physical

Review Letters, 87:194301, 2001.

[100] Jean Rajchenbach. Flow in powders: From discrete avalanches to continuous regime.

Physical Review Letters, 65:2221–2224, 1990.

[101] Robert Savit and Robert Ziff. Morphology of a class of kinetic growth models. Physical

Review Letters, 55:2515–2518, 1985.



104
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Appendix A

ACTIVE WIDTH AT A SLANTED ACTIVE BOUNDARY IN

DIRECTED PERCOLATION

It is shown in this appendix that the width W of the active region around an active

moving wall in a directed percolation process diverges at the percolation threshold pc as

W ' Aε−ν‖ ln(ε0/ε), with ε = pc − p, ε0 a constant, and ν‖ = 1.734 the critical exponent

of the characteristic time needed to reach the stationary state ξ‖ ∼ ε−ν‖ . The logarithmic

factor arises from screening the statistically independent needle shaped subclusters in the

active region. Numerical data confirm this scaling behavior.

A.1 Introduction

Directed percolation (DP) has emerged as one of the generic absorbing-state-type dynamic

processes. It describes epidemic processes, e.g., forest fires and various types of surface

catalysis processes [68, 102, 45, 46, 115]. Such processes include a so-called absorbing state,

typically the vacuum, from which it cannot escape. The relevant tunable parameter is the

propagation probability p. The system undergoes a phase transition from the absorbing

phase at small p, where the stationary state is the absorbing state, into an active stationary

phase at large p, where the system refuses to die. The scaling properties at DP dynamic

phase transitions have been known for almost two decades, and it’s now realized that DP

critical behavior is the generic universality class for dynamic absorbing-state-type processes

[68].

At DP-type critical points, the equilibration time ξ‖ diverges. It scales as ξ‖ ∼ ξz
⊥

compared to the spatial correlation length ξ⊥, with dynamic exponent z = 1.581 [63]. For

example, starting from a single seed, the survival probability obeys the scaling form

Ps(ε, t) = b−xsPs(b1/ν⊥ε, b−zt) (A.1)
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with ε = pc − p the distance from the critical point. This leads to

Ps ∼ εβ exp(
−t

ξ‖
), (A.2)

with exponent β = xsν⊥. The exponential factor reflects that deep inside the absorbing

phase Ps decays exponentially in time. The equilibration time diverges at the DP critical

point as ξ‖ ∼ ε−ν‖ with z = ν‖/ν⊥. At pc the survival probability decays as a power law,

Ps(t) ∼ t−δ with δ = xs/z = β/ν‖.

A recent direction of research in this topic concerns the scaling properties near bound-

aries [37, 43, 72, 73]. Those studies address absorbing and reflective walls. The scaling

properties are modified by surface-type critical exponents. In particular, the survival prob-

ability for a seed near the boundary obeys the same scaling form as above, but with a new

interface critical exponent x, and therefore a modified value for β.

In this appendix, we discuss the scaling properties near active boundaries. Consider a

stationary active vertical wall in the system. All sites in the wall are alive. The critical

exponent β is not an issue, because the system remains active near the wall for all p. How-

ever, in the absorbing phase the cloud of active sites near the wall has a specific stationary

state width, which is expected to diverge as W ∼ ξ⊥ ∼ ε−ν⊥ . Widths like this diverge with

bulk exponents.

Assume that this wall is slanted, with an arbitrary angle θ 6= 90◦ with respect to the

horizontal direction (see Fig. A.1). In the space-time interpretation of the configurations,

the wall moves with a constant velocity. It acts as a slanted active curtain rod. A curtain

of active sites hangs down from it as illustrated in Fig. A.1. For p < pc, the curtain has a

finite width l⊥ and length l‖ = l⊥ tan(θ).

In this appendix, we address how the stationary state width of this slanted curtain scales

near the DP critical point. Naively this seems a simple question. One would expect that the

curtain width diverges with the same exponent as the equilibration time scale, W ∼ ε−ν‖ ,

i.e., with the same exponent as the length of a curtain hanging down from an horizontal

curtain rod (θ = 0) [48, 70]. The latter is equivalent to asking for the survival probability

in the setup without any walls where all sites are active in the initial state.

This expectation is based on the anisotropic scaling properties. Consider a system with a
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θ

Figure A.1: The curtain of active sites at the active slanted boundary.

rod at angle θ 6= 0. The horizontal and vertical bulk lengths diverge with different exponents,

as ξ‖ ∼ ξz
⊥. Therefore, a system at pc−p = ε and wall angle θ is equivalent by renormalization

to a system with a smaller wall angle θ′ at ε′ = b−1/ν⊥ε with tan(θ′) ' bz−1 tan(θ). The

scaling properties of W should not depend on the angle θ, since the rod renormalizes towards

the horizontal position. We should expect the same scaling behavior as at θ = 0. However,

a recent numerical study [70] seems to contradict this.

Kwon et al. [70] studied a model with two absorbing states. It undergoes a dynamic

phase transition which belongs to directed Ising (DI) universality class when the two absorb-

ing states are symmetric, and belongs to the directed percolation universality class when a

symmetry breaking field is introduced. They studied the interface dynamics of the active

domain between two asymmetric absorbing states. As one absorbing state dominates over

the other, the interface is driven into the unpreferred absorbing region with a constant ve-

locity. Therefore they expected the width of the active domain to scale like the horizontal

width of the active curtain in the above setup for ordinary DP models. A simple power-law
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fit of their data suggests that the active domain width scales as W ∼ ε−x with x ' 2.00(5),

which does not agree with the DP exponent ν‖ ≈ 1.734.

In this appendix, we address the same issue more directly. We insert a slanted active wall

into the most basic model for DP, the one studied originally by Kinzel and coworkers [67, 33]

(see Sec. A.2). We find a similar anomalous value for the width exponent. W ∼ ε−x scales

as x ' 1.95(5). In Sec. A.3, we develop a qualitative scaling theory. It predicts that the

curtain width scales with the conventional exponent ν‖ but with an additional logarithmic

factor as W ' Aε−ν‖ ln(ε0/ε). In Sec. A.4, we show that the numerical Monte Carlo data

fits this form well. In Sec. A.5, we illustrates how DP-type processes with slanted walls can

be studied in the master equation formalism. Our finite-size-scaling (FSS) results, using

exact numerical enumeration of the eigenvalue spectrum, show that at pc, the width of the

slanted curtain diverges as W ∼ Lz with system size. This confirms the absence of a new

independent exponent. The logarithmic factor arises only in the ε dependence.

A.2 Numerical results for the curtain width

Consider the square space-time lattice shown in Fig. A.2. All bonds run under 45◦. The

black (open) circles represent the active (inactive) sites. Time evolves from top to bottom

in half units t → t + 1/2. Bonds between nearest neighbor sites at t and t → t + 1/2 are

being created with probability p but only if the upper site is active. Each bond activates the

lower site. Kinzel studied this model in detail with master-equation-type FSS in the early

1980s [67]. The critical exponents and the location of the DP transition are known quite

accurately. For example, the latest series expansion results put the DP phase transition at

pc ≈ 0.6447 [63].

We modify the boundary conditions in this model to accommodate an active wall. The

lattice is semi-infinite, bound to the left by the wall, which runs away under θ = 45◦ as

shown in Fig. A.2. 45◦ is its natural angle for the curtain rod for this specific lattice.

We can restrict ourselves to this angle because the scaling properties of the curtain width

should not depend on the angle according to the anisotropic scaling argument outlined

above. Moreover, the angle is a continuous parameter in the model by Kwon et al. [70] and
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Figure A.2: Lattice structure near the active boundary.

their results show no angle dependence.

We perform Monte Carlo simulations with, as initial configuration, an active wall in an

inactive bulk. The horizontal curtain width is defined as the distance of the last active site

from the rod in each time slice. For p < pc, the width grows initially approximately linear in

time, until it saturates at the stationary state value which varies with ε = pc−p. Figure A.3

shows the active width versus ε on a logarithmic scale. The line is quite linear over the two

decades shown. The slope is clearly distinct from the expected value ν‖ ≈ 1.734 and close

to the value found by Kwon et al. [70]. In Fig. A.4 we perform a more careful FSS analysis

of the same data. We fit the numerical data from two nearby points, ε2 =
√

2ε1, to the form

W ' aε−x and plot x as a function of ε, the exponent x appears to be around 1.95. This fit

is remarkably stable, and shows virtually no power-law-type corrections to scaling. Taken

out of context it is strongly suggestive of a new independent critical exponent. The other

curves in Fig. A.4 relate to the FSS analysis assuming an additional logarithmic factor as

discussed in the next two sections.
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Figure A.3: Log plot of active width versus pc − p from straight Monte Carlo simulations

on unlimited system sizes. The solid line represents the data. The dashed straight lines of

slopes −2 and −1.734 are guides to the eyes.
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a

bc

Figure A.4: Estimates for the active width exponent, x. In fit (a), W is assumed to scale

as W ∼ ε−x, in (b), as W ∼ ε−x ln ε and in (c), as W ∼ ε−x(ln ε + ln 2).

A.3 Independent Cluster Approximation

Figure A.1 shows a typical curtain configuration in a Monte Carlo simulation at a p just

below the percolation threshold pc. The most striking features are the needles in the curtain.

Isolated clusters are expected to be needlelike. The correlation length in the time direction

diverges faster than in the spatial direction, as ξ‖ ∼ ξz
⊥. Therefore, active clusters (when

grown from a single seed) become needle shaped near the percolation threshold. Figure

A.1 gives the impression that close to pc, the curtain consists of a set of weakly interacting

needle shaped clusters when viewed from length scales larger than ξ⊥.

In this section, we pursue the implications of the assumption that such needles are

completely uncorrelated. In that approximation, the probability that the curtain extends

over a horizontal distance l is given by the probability that a needle longer than τ = l tan(θ)

hangs down from the curtain rod vertically above that site. Let P be that probability. It

must have the same form as the survival probability from a single seed [Eq. (A.2)]. The
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actual value of the exponent β turns out to be irrelevant in this section, but it must be

identical to the single seed value, according to a time reversal symmetry argument (following

[19, 56]).

The spatial coordinate needs to be coarse grained, because the needles can only be

uncorrelated beyond the horizontal correlation length ξ⊥ ∼ ε−ν⊥ . Define n = x/ξ⊥ as the

coarse-grained discrete spatial coordinate and recall that t = x tan(θ) is the corresponding

vertical distance from the curtain rod to the same point. The probability for the curtain to

have width n factorizes in the independent needle approximation as

Pw(n) = P (n)
∏

n′>n

[
1− P (n′)

]
. (A.3)

This equation can be rewritten into a derivative form

Pw(n + 1)− Pw(n)
Pw(n + 1)

=
P (n + 1)− P (n)[1− P (n + 1)]

P (n + 1)
. (A.4)

The maximum of the distribution obeys the relation

Pw(ñ− 1) = Pw(ñ) (A.5)

and can be written as
1

P (ñ)
− 1

P (ñ− 1)
= 1. (A.6)

Assume that P has the same asymptotic form as the single seed survival probability [in

Eq. (A.2)] and that the maximum of the distribution occurs in this range of n. The

transformation to the coarse-grained n = x/ξ⊥ ∼ xεν⊥ variable changes the critical exponent

inside the exponential factor

P ' Bεβe−bnε∆ , (A.7)

with ∆ = ν‖ − ν⊥, and b ∼ tan(θ). Inserting this form into Eq. (A.6) leads to

1− e−bε∆ = Bεβe−bñε∆ , (A.8)

and after expanding the exponential on the left hand side, to

bñ|ε|∆ ' ln
(

B

b

)
+ (β −∆) ln(ε). (A.9)
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In original units this reads

W̃ ' Aε−ν‖ ln
(

ε0
ε

)
. (A.10)

The characteristic probability depends on the wall angle as ε0 ∼ 1/ tan(θ). The most prob-

able width W̃ scales with the expected exponent ν‖ but contains an additional logarithmic

factor.

Asymptotically, the most probable and the average widths coincide. Equation (A.4) can

be approximated in the continuum limit as

1
Pw

dPw

dn
= 1− P (n)

P (n + 1)
+ P (n). (A.11)

Close to pc and for large n, where P obeys Eq. (A.7), we can integrate this

Pw(n) ∼ exp
(

(1− ebε∆)n− B

b
εβ−∆e−bnε∆

)

∼ ebnε∆ exp
(
−B

b
εβ−∆e−bnε∆

)
. (A.12)

This distribution decays exponentially on both sides of the most probable value and becomes

sharp at the critical point, ε → 0. We checked explicitly that the most probable and the

average coincide in this limit, and scale asymptotically with the same logarithmic factor, as

in Eq. (A.10).

A.4 Logarithmic corrections to scaling analysis

The logarithmic factor in the independent needle approximation formula for the curtain

width

W (ε) ' Aε−ν‖ ln
(

ε0
ε

)
(A.13)

does not change the asymptotic exponent. It is still equal to ν‖. However the finite-size-

scaling approach to this value is very singular. A conventional FSS analysis involves the

construction of estimates for the critical exponent x by fitting the values of W at to nearby

ε to a pure power-law form, W ∼ ε−x. This is equivalent to defining x(ε) as a derivative

and it yields the above logarithmic form

x = − ε

W

dW

dε
= ν‖ +

1
ln(ε0/ε)

. (A.14)
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This function approaches ν‖ in a singular manner. In the interval 0.01 < ε/ε0 < 0.3, x seems

to converge convincingly with a linear correction to scaling term to an effective exponent

which is about 0.2 too large. One would have to go to extremely small ε’s to see the true

convergence. The power-law fit in Fig. A.4 shows signs of this.

The two other curves in Fig. A.4 show the FSS estimates for the exponent ν‖ according

to the form Eq.(A.13) with ε0 = 1 or ε0 = 0.5. ε0 is unknown, but likely of order one. Both

curves converge towards the conventional value ν‖ = 1.734. This is strong evidence for the

presence of the logarithmic factor.

A.5 Finite-size scaling at the percolation threshold

The logarithmic factor originates from the screening of independent needles. It should not

play a role in the FSS at the percolation threshold itself, because there ξ⊥ diverges, and the

independent needle concept becomes meaningless.

So, the curtain width must scale as W ∼ Lz at pc, if it is really true that no indepen-

dent new exponent is involved. To confirm this, we present in this section numerical data

from master-equation-type FSS using exact enumeration. We also performed Monte Carlo

simulations but prefer to present our master-equation data since this method requires a

technical novelty.

A moving wall is inconvenient in simulations. The lattice is finite by necessity and the

moving wall requires a much bigger lattice than the one actually used by the process. This

is a handicap in particular for master-equation calculations where one evaluates the rate

at which the stationary state is being reached by letting time go to infinity at each lattice

size L. Those systems’ sizes are typically small (L ≤ 20 in our case) because phase space

scales exponentially with L. Compared to Monte Carlo simulations the master-equation

method trades system size for numerical accuracy, and the ability to perform a detailed

corrections to scaling analysis. The accuracy of the two methods is typically comparable,

except for specific issues, such as the logarithmic factor in the previous sections, which

requires intrinsic large lattice sizes.

The solution to the moving wall problem is to distinguish between the time and space
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directions of the dynamic process, ê⊥ and ê‖, and the ones used in the master equation.

There is no need for them to coincide. We choose a setup where the time and space directions

of the master equation are redirected in the following manner. Lines of constant time are

parallel to ê‖− ê⊥, such that the moving wall coincides with the t = 0 line. Lines of constant

position are parallel to the x axis, which in the dynamic process represented lines of constant

time.

The following skewed dynamic rule implements this pace-time rotation. Consider a

square space-time lattice (Fig. A.2 rotated over 45 degrees). Each site in the master-

equation time slice t is updated sequentially from right to left. The probability for site x

at time τ to be active depends on whether site x− 1 was active at the previous time t− 1

and/or at this moment in time, t. This setup requires screwlike boundary conditions. The

forest fire runs under an angle. In this new interpretation, the active wall represents a fully

active initial configuration.

The energy gap in the spectrum of the time evolution operator (transfer matrix) is

related to the curtain width in the following manner. Let |I〉 be the initial state of the

master equation, |0〉 be the absorbing state, and T̂ be the transfer matrix. The stochastic

nature of the transfer matrix implies that the disordered state |D〉 is a left eigenvector with

eigenvalue λ0 = 1. Define âx as the projection operator which returns one (zero) when site

x active (inactive). The curtain width is associated with the probability distribution for

site x to be active at time t but after that never again. This takes the form

P (x, t) = lim
tF→∞

〈D|[(1− âx)T̂ ]tF−tâxT̂ t|I〉. (A.15)

The operator (1− âx)T̂ has λ0 = 1 as largest eigenvalue since

(1− âx)T̂ ]|0〉 = |0〉, (A.16)

and because attaching a projection operator to T̂ cannot result in an eigenvalue larger than

the largest one in T̂ . Let 〈Lx| be the corresponding left eigenvector (which can be evaluated

numerically). Inserting this leads to

P (x, t) = 〈Lx|âxT̂ t|I〉 ' 〈Lx|âx|λ1〉λt
1〈λ1|I〉 ∼ exp[−t/ξt], (A.17)
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Figure A.5: Finite-size-scaling exponent z for (×) the characteristic active width, W ∼ Lz,

and for (+) the time to reach the stationary state, t ∼ Lz, at the percolation threshold in

the transfer matrix setup. The data virtually coincide.

with ξt = ln(λ1) and λ1 the next largest eigenvalue of T̂ .

This illustrates that the curtain width scales in the same manner as the the characteristic

time ξt needed to reach the stationary state, when the latter is measured in this space-time

twisted coordinate system. Figure A.5 shows the FSS estimates for the dynamic exponent

z according to ξt ∼ Lz and W ∼ Lz. Both converge clearly to the DP dynamic exponent

z ≈ 1.58. This confirms that no new independent curtain width exponent is present.

A.6 Final Remarks

The analysis presented in this appendix explains the anomalous scaling of the width of the

slanted curtain boundary in DP-type processes. The needles screen each other, and that

leads to an extra logarithmic factor according to the independent needle approximation.

Our numerical data confirm the validity of this assumption.
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The same mechanism must apply to other dynamic processes, like directed-Ising-type

absorbing state dynamics, and also to other quantities. Consider the following example.

Directed percolation describes epidemic growth processes without immunization, where the

probability to be sick at time t + 1 requires that yourself or at least one of your neighbors

is already sick at time t. Consider an initial condition that everybody is sick at time t = 0.

A stationary local observer will conclude that below the percolation threshold the lifetime

of the epidemic scales as t ∼ ε−ν‖ . A moving observer concludes it diverges faster, as

t ∼ ε−ν‖ ln(ε0/ε).
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